Kolmogorov structure functions for automatic complexity

Bjørn Kjos-Hanssen

June 16, 2015 – Varieties of Algorithmic Information, University of Heidelberg – Internationales Wissenschaftssentrum

History

- 1936: Universal Turing machine / programming language / computer
- 1965: Kolmogorov complexity of a string x = 0111001, say, = the length of the shortest program printing x
- 1973: Structure function (Kolmogorov)
- 2001: Automatic complexity A(x) (Shallit and Wang) (deterministic)
- 2013: Nondeterministic automatic complexity $A_N(x)$ (Hyde, M.A. thesis, University of Hawai'i): n/2 upper bound.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• 2014: Structure function for automatic complexity: entropy-based upper bound.

Definition of A_N , nondeterministic automatic complexity

- Let M be an nondeterministic finite automaton having q states. If there is exactly one path through M of length |x| leading to an accept state, and x is the string read along the path, then we say A_N(x) ≤ q.
- Such an NFA is said to witness the complexity of x being no more than q.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Upper Bound

Theorem 1 (Hyde 2013)

Let $|\Sigma| \ge 2$ be fixed and suppose $x \in \Sigma^n$. Then $A_N(x) \le \frac{n}{2} + 1$.

・ロト・日本・モート モー うへの

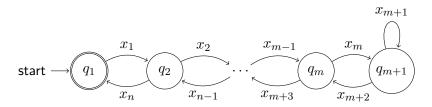


Figure 1: An NFA uniquely accepting $x = x_1 x_2 \dots x_n$, n = 2m + 1

Example

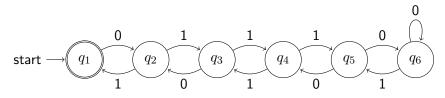


Figure 2: An NFA uniquely accepting x = 01110010101, |x| = 11, $A_N(x) \le 6$.

Background

The Kolmogorov complexity of a finite word w is roughly speaking the length of the shortest description w^* of w in a fixed formal language. The description w^* can be thought of as an optimally compressed version of w. Motivated by the non-computability of Kolmogorov complexity, Shallit and Wang studied a deterministic finite automaton analogue.

Definition 1 (Shallit and Wang 2001)

The automatic complexity of a finite binary string $x = x_1 \dots x_n$ is the least number $A_D(x)$ of states of a deterministic finite automaton M such that x is the only string of length n in the language accepted by M.

Deficiency

Definition 2

The deficiency of a word x of length n is

$$D_n(x) = D(x) = b(n) - A_N(x).$$

where $b(n) = \lfloor \frac{n}{2} \rfloor + 1$ is Hyde's upper bound.

Length n	$\mathbb{P}(D_n > 0)$	Length n	$\mathbb{P}(D_n > 0)$
0	0.000	1	0.000
2	0.500	3	0.250
4	0.500	5	0.250
6	0.531	7	0.234
8	0.617	9	0.207
10	0.664	11	0.317
12	0.600	13	0.295
14	0.687	15	0.297
16	0.657	17	0.342
18	0.658	19	0.330
20	0.641	21	0.303
22	0.633	23	0.322
24	0.593	25	0.283

(a) Even lengths. (b)

(b) Odd lengths.

Table 1: Probability of strings of having positive complexity deficiency D_n , truncated to 3 decimal digits.

Definition 3

Let DEFICIENCY be the following decision problem. Given a binary word w and an integer $d \ge 0$, is D(w) > d?

Theorem 4 DEFICIENCY *is in NP*.

We do not know whether DEFICIENCY is NP-complete. Can you find deficiencies? Play the Complexity Guessing Game or the Complexity Option Game.

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへで

The next table shows the number of strings of length $0 \le n \le 15$ having nondeterministic automatic complexity k. (Paper contains a table for $n \le 23$.) We note that each column has a limiting value (2,6,20,58,...).

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

$n \setminus k$	1	2	3	4	5	6	7	8
15	2	6	20	58	226	908	8530	23018
14	2	6	20	58	244	1270	9668	5116
13	2	6	20	64	250	2076	5774	
12	2	6	20	58	282	2090	1638	
11	2	6	20	58	564	1398		
10	2	6	20	64	588	344		
9	2	6	20	78	406			
8	2	6	20	130	98			
7	2	6	22	98				
6	2	6	26	30				
5	2	6	24					
4	2	6	8					
3	2	6						
2	2	2						
1	2							
0	1							

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ う へ ()・

Structure function

Let

$$\begin{split} S_x &= \{(q,m) \mid \exists \ q\text{-state NFA} \ M, x \in L(M) \cap \Sigma^n, |L(M) \cap \Sigma^n| \leq b^m \} \\ \text{where } b &= |\Sigma|. \text{ Then } S_x \text{ has the upward closure property} \\ q &\leq q', m \leq m', (q,m) \in S_x \quad \Longrightarrow \quad (q',m') \in S_x. \end{split}$$

Structure function

Definition 5 (Vereshchagin, personal communication, 2014)

In an alphabet Σ containing b symbols, we define

$$h^*_x(m) = \min\{k: (k,m) \in S_x\}$$
 and

$$h_x(k) = \min\{m : (k,m) \in S_x\}.$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Thus $(k,m) \in S_x$ iff $h_x^*(m) \le k$ iff $h_x(k) \le m$.

Example 6

The string x = 011111110111111 has an "optimal explanation" given by an automaton which goes to a new state when reading a 0, and stays in the same state when reading a 1. In this case $h_x(3)$ is more unusually small (the *p*-value associated with $h_x(3)$ is small) than other $h_x(k)$.

SQC

Definition 7

The entropy function $\mathcal{H}: [0,1] \rightarrow [0,1]$ is given by

$$\mathcal{H}(p) = -p \log_2 p - (1-p) \log_2 (1-p).$$

A useful well-known fact:

Theorem 8

For $0 \le k \le n$,

$$\log_2 \binom{n}{k} = \mathcal{H}(k/n)n + O(\log n).$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

Definition 9

The dual automatic structure function of a string x of length n is a function $h_x^* : [0, n] \to [0, \lfloor n/2 \rfloor + 1]$. We define the asymptotic upper envelope of h^* by

$$\widetilde{h^*}(a) = \limsup_{n \to \infty} \max_{|x|=n} \frac{h_x^*([a \cdot n])}{n}, \quad \widetilde{h^*}: [0, 1] \to [0, 1/2]$$

Let

$$\tilde{h}(p) = \limsup_{n \to \infty} \max_{|x|=n} \frac{h_x([p \cdot n])}{n}, \quad \tilde{h}: [0, 1/2] \to [0, 1]$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where [x] is the nearest integer to x.

We are interested in upper bounds on h.

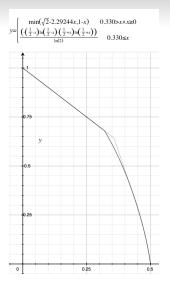


Figure 3: Bounds for the automatic structure function for alphabet size b = 2.

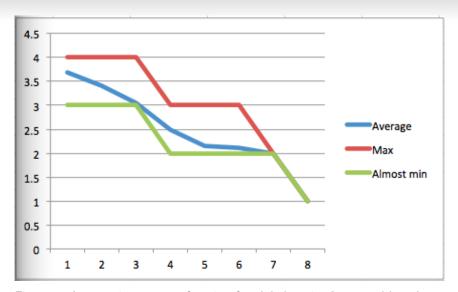


Figure 4: Automatic structure function for alphabet size b = 2 and length 7.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Multirun complexity

A *multirun* is a disjoint collections of runs of varying valences. For instance, in 011111023232 the most unlikely may be the two runs 11111 and 23232.

This corresponds to automata with no back-tracking.

Question 10

Given a word over a k-ary alphabet, can we efficiently find the multirun which has smallest p-value?

There are too many sequences of possible runs to consider them all, but perhaps there is another way. Structure Function Calculator