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Phenomenology of Mathematical Implication
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An Introduction to
Partial Differential
Equations

o

Lemma 8.36. The open mapping theorem, the bounded inverse theorem,
and the closed graph theorem are equivalent.




Phenomenology of Mathematical Implication

242 8. Operator Theory

Proof. Open mapping theorem = bounded inverse theorem. It is
immediately clear from the hypotheses of the bounded inverse theorem that
a linear inverse operator A~! with domain R ists. The nontrivial
assertion is that A~ is bounded. However, this follows from the open
mapping theorem, the equivalence of boundedness and continuity for linear
operators, and the topological version of the definition of contimuity: that
an operator T is continuous if and only if the inverse image of open sets in
R(T) is open in D(T). (The inverse image of an open set in R(A™) (=
X —D(A)) under A~1 is the same as the image of the set under A.)

Bounded inverse theorem = closed graph theorem. We first observe
that the product space X x Y is a Banach space with norm

I+ lyll (8.31)

I, w)ll =
Our hypothesis is that T(A) is a closed subspace in X x ¥ and D(A) is a
closed subspace in X. Thus T(4) and D(A) are Banach spaces. We now
define a projection map

P:T(A) = D(A) (8.32)
by
P(z,Az) == (8.33)
Note that P is linear and bijective. If fact, its inverse
P~ D(A) 5 T(4) (8.34)
is defined by
Pz = (z,Az). (8.35)
The mapping P is also bounded since
I1P@. Az)]| = |lz] < [l2] + | As] = (. A=) (836)

Thus, by the bounded inverse theorem (8.34) there is a constant C' such
that

(. Az)]| = [P~ 2]l < Clle]| (8.37)
But this implies A is bounded since
llAz] < li(x, A2)|| < Clla]| (8.38)

for eve

rery x € D(A).

Closed graph theorem = bounded inverse theorem. This part is
left as an exercise. (Problem 8.12.)

Bounded inverse theorem = open mapping theorem. We prove
this only in the case where X is a Hilbert space. Since A is bounded, Af(A)
s closed (cf. Problem 8.9). Thus, we can use the projection theorem to
decompose X into X = A'(4) &N (A)*. We then let P: X — N (A)* be




Kolmogorov's Calculus of Problems and Solutions

Zur Deutung der intuitionistischen Logik.
Vou
A. Kolmogoroff in Moskan.

Die vorliegende Abhandlung kann von zwei ganz verschiedenen Stand-
punkten aus betrachtet werden.

1. Wenn man die intuitionistischen erkenntnistheoretischen Voraus-
setzungen nicht anerkennt, so kommt nur der erste Paragraph in Betracht,
Die Resultate dieses Paragraphen konnen etwa wie folgt zusammengefaBt
werden:

Neben der theoretischen Logik, welche die Beweisschemata der theo-
retischen Wahrheiten systematisiert, kann man die Schemata der Losungen
von Aufgaben, z B. von geometrischen Konstruktionsaufgaben, systemati-
sieren. Dem Prinzip des Syllogismus entsprechend tritt hier z. B. das
folgende Prinzip auf: Wenn wir die Losung von b auf die Lisung von a
und die Losung von ¢ auf die Lésung von b suriickfihren konnen, so
konnen wir auch die Lisung von ¢ auf die Lisung von a zurickjihren.

Man kann eine entsprechende Symbolik einfiihren und die formalen
Rechenregeln fiir den symbolischen Aufbau des Systems von solchen Auf-
gabenlosungsschemata geben. So erhilt man neben der theoretischen Logik
eine neue Au/ga,benmclmmug. Dabei braucht man keine speziellen erkenntnis-

Es gilt dmn die folgende merkwiirdige Tatsache: Nach der Form
Jallt die mit der von Herrn Heyting
‘neuerdings isi intuitionistischen. Logik zusammen

2. Im zweiten ngnphen mrd unter Anerkennung der allgemeinen

istische Logik Lritisch unter-
sucht; es wird dabei gezeigt, m sie durch die Aufgabenrechnung ersetzt
werden sollte, denn ihre Objekte sind in Wirklichkeit keine theoretischen
Aussagen, sondern vielmehr Aufgaben.

Heyting, Die formalen Regeln der intuitionistischen Logik, Sitz. d. Pens. Akad.
(1930), T, 8.42; I, 8.57; I, 8.158.

A. Kolmogoroff, Zur Deutung der intuitionistischen Logik,
Mathematische Zeitschrift, Band 35 (1932) S. 58-65



Kolmogorov's Calculus of Problems and Solutions

» Kolmogorov states that intuitionistic logic should be replaced
by the calculus of problems, for its objects are in reality not
theoretical propositions but rather problems.

» Kolmogorov's calculus of problems and solutions suggests
interpretations rather of computability theoretic nature than
of proof theoretic nature.

» The Medvedev lattice has been developed as a model for
Kolmogorov's calculus of problems (and it turned out to be a
model for an intermediate logic, called Jankov's logic).

» We will provide another computability theoretic interpretation
of Kolmogorov's calculus of problems and solutions.

» While “problems” have been considered as subsets A C N in
the Medvedev lattice, we will choose a more general
interpretation.



Mathematical Problems and Solutions

A is a partial multi-valued map
fCxX=Yy.

The idea is that
» There are a certain sets of potential inputs X and outputs Y.

» The domain D = dom(f) contains the valid instances of the
problem.
» f(x) is the set of solutions of the problem f for instance x.



Mathematical Problems and Solutions

A is a partial multi-valued map
fCxX=Yy.

The idea is that
» There are a certain sets of potential inputs X and outputs Y.

» The domain D = dom(f) contains the valid instances of the
problem.

» f(x) is the set of solutions of the problem f for instance x.

Definition
A of a mathematical problem f :C X = Y is a map
s:C X =2 Y such that s(x) C f(x) for all x € X.

We consider a problem as (algorithmically) solvable, if it has a
(computable) continuous solution.



Examples of Mathematical Problems

» The Limit Problem is the mathematical problem
lim :C NN — NN (pg, p1,...) — lim p;
1—00

with dom(lim) := {(x;) : (x;) is convergent}.
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Examples of Mathematical Problems

» The Limit Problem is the mathematical problem
lim :C NN — NN (pg, p1,...) — lim p;
1—00

with dom(lim) := {(x;) : (x;) is convergent}.

» Martin-Lof Randomness is the mathematical problem
MLR : 2% = 21 with

MLR(x) := {y € 2 : y is Martin-L6f random relative to x}.

» The Cohesiveness Problem is the mathematical problem
COH : (2M)N = 2N where COH(R;) contains all infinite
X C N such that for all i € N one of the sets

XNRior XN(N\R)

is finite.
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Let f:C X = Y and g :C Z = W be two mathematical problems.
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X K g H f(x)
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» f is called Weihrauch reducible to g, in symbols f < g, if
there are computable H.C X x W = Yand K. C X =2 Z
such that H(id, gK) C f and dom(f) C dom(H(id, gK)).



Weihrauch Reducibility

Let f:C X = Y and g :C Z = W be two mathematical problems.

f‘

X K g H f(x)

L

» f is called Weihrauch reducible to g, in symbols f < g, if
there are computable H.C X x W = Yand K. C X =2 Z
such that H(id, gK) C f and dom(f) C dom(H(id, gK)).

> f is called strongly Weihrauch reducible to g, in symbols
f <qw g, if there are computable H :C W = Y and
K :C X = Z such that HgK C f and dom(f) C dom(HgK).



Algebraic Operations in the Weihrauch Lattice

Let , g be two mathematical problems. We consider:

>

>

f x g: both problems are available in parallel

f LI g: both problems are available, but for each instance one
has to choose which one is used

f M g: given an instance of f and g, only one of the solutions
will be provided

fxg: f and g can be used consecutively

g — f: this is the simplest problem h such that  can be
reduced to g x h
f*: f can be used any given finite number of times in parallel

f: f can be used countably many times in parallel

f': f can be used on the limit of the input



Some Formal Definitions

For f :C X = Y and g :C W = Z we define:

» Fxg CXxW=YXZ (x,w)— f(x)x g(w)
f(z)ifze X
glz)ifze W
flg:CXxW=YULZ (x,w)— f(x)Ug(w)
> X Y =
7 AC S = W =5

v

fUg:CXUW= YI_IZ,zr—>{

v

v



Some Formal Definitions

For f :C X = Y and g :C W = Z we define:

>

>

>

>

fxg CXxW=YxZ, (x,w)— f(x)x g(w)
f(z)ifze X
glz)ifze W
flg:CXxW=YULZ (x,w)— f(x)Ug(w)
PO X = Y =2,

7 AC S = W =5

fUg:CXUW= YI_IZ,zr—>{

Weihrauch reducibility induces a lattice with the coproduct L
as supremum and the sum 1 as infimum.

Parallelization and star operation are closure operators in the
Weihrauch lattice.

With U, x,* one obtains a Kleene algebra.

The Weihrauch lattice is neither a Brouwer nor a Heyting
algebra (Higuchi und Pauly 2012).



Infima and Suprema

The Weihrauch lattice is not complete and infinite suprema and
infima do not always exist. There are some known existent ones.

Definition

For two mathematical problem f, g we define the

fxg:=max{fpogy:fo<wf and go <w g}
and the

g — f:=min{h: f <w g * h}.

The maximum and minimum is understood with respect to <
and they always exist (B. and Pauly 2013).



Embedding of the Medvedev Lattice

Let AC NN,

1. By ca : NN = NN p — A we denote the
with value A € N,

2. By id|s :C NN — NY we denote the A.




Embedding of the Medvedev Lattice

Let AC NN,

1. By ca : NN = NN p — A we denote the
with value A € N,

2. By id|s :C NN — NY we denote the A.

Proposition (B. and Gherardi 2009)

LetA,BgNN,A@B:<A><B>,A®B:OAU1B. Then
» A<y B <= ca<wceg < id|g<wid

A’
_ _ * S
> CApB =W CA X CB zw(CAUCB) =w ca Ll cg,

> CAxB =W CA [ CBh

> id|A@B =W id|A x id B,

> id|A®B =w id‘A L id|B.



Theorems as Problems

Any theorem T of the form
(" xeX)Fy €eY)(xe D= P(x,y))
is identified with F :C X = Y with dom(F) := D and
F(x)={yeY:P(x,y)}




Theorems as Problems

Any theorem T of the form
(" xeX)Fy €eY)(xe D= P(x,y))
is identified with F :C X = Y with dom(F) := D and
F(x)={yeY:P(x,y)}

Example

Weak Weak Kénig's Lemma is the mathematical problem
WWKL :C Tr = 28 T [T]

with dom(WWKL) := {T € Tr: u([T]) > 0}.



Choice

The Cx of a topological space X is the
mathematical problem induced by the statement:

» Every non-empty closed set A C X has a point x € A.



Choice

Definition
The Cx of a topological space X is the
mathematical problem induced by the statement:

» Every non-empty closed set A C X has a point x € A.

Example:
» C, is the problem of finding a point in a non-empty subset
A C {0,1} where A is described by an infinite sequence that
can eventually remove one point from A.
» We obtain LLPO =.w C, where LLPO is Bishop's Lesser
Limited Principle of Omniscience.



Calibration of Computabiltiy Notions

complete for
limit computations

|
1

lim =sW CN

/\

C2N =W C2

complete for
non-deterministic
computations

complete for
finite mind change
computations

(Joint results with de Brecht and Pauly 2012)



Discriminative Problems

We call f discriminative, if Co <w f and indisciminative otherwise.




Discriminative Problems

Definition
We call L if Co <w f and otherwise.

lim =y Cx
CzN —SW C2

\/



Classical Analysis is Discriminative

Monotone Convergence Theorem
Fréchet-Riesz Theorem
Radon-Nikodym Theorem
e

4
lim =W CN

Weak Kénig's Lemma
Hahn-Banach Theorem
Brouwer Fixed Point Theorem

Baire Category Theorem
Open Mapping Theorem
Bounded Inverse Theorem

(Results of B., Gherardi, Marcone, Hoyrup, Rojas, Weihrauch, ...)



Classical Computability Theory is Indiscriminative

(Joint results with Hendtlass and Kreuzer)



Classical Computability Theory is Indiscriminative

Philosophical implications:
» Classical mathematics is discriminative.
» Computablity theory is indiscriminative.

» Hence, computability theory has no implications on classical
mathematics!
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Classical Computability Theory is Indiscriminative

Philosophical implications:
» Classical mathematics is discriminative.
» Computablity theory is indiscriminative.

» Hence, computability theory has no implications on classical
mathematics!

Very general:

» Every theorem that claims the existence of a Turing degree is
indiscriminative.

Exceptions in computability theory:
» Theorems such as the Low Basis Theorem are discriminative.

Perhaps that is why it is called the most applicable theorem of
computability theory?



Examples of Implications



Characterization of Martin-Lof Randomness

Theorem (B. and Pauly)
MLR =y (Cy — WWKL).
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random real p is a path in every infinite binary tree T of positive
measure up to some finite prefix. Using Cy we can cut away longer
and longer prefixes of p until we find a path in T.



Characterization of Martin-Lof Randomness

Theorem (B. and Pauly)
MLR =y (Cy — WWKL).

Proof. (Sketch.) (Cy — WWKL) <yw MLR: It suffices to prove
WWKL <w Cy * MLR. By Kucera's Lemma, every Martin-Lof
random real p is a path in every infinite binary tree T of positive
measure up to some finite prefix. Using Cy we can cut away longer
and longer prefixes of p until we find a path in T.

MLR <w(Cyn — WWKL): Given some h with WWKL <y Cy * h
we need to prove that MLR <y h. Given some universal
Martin-Lof test (U;);, the complement Ay := 2"\ U is a closed
set of positive measure and given the corresponding tree T with

A = [T] the function h will deliver some sequence g that can be
converted into a Martin-Lof random real by a finite mind change
computation. This computation can be converted into a regular
computation that yields a Martin-Lof random real. U
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Characterization of Cohesiveness

Theorem (B., Hendtlass and Kreuzer)
COH =w (lim — WKL").

Proof. (ldea.) It is known that

» WKL =w BWTg (B., Gherardi and Marcone 2012),

» COH=w WBWTpg (Kreuzer 2012),
where BWTy is the Bolzano-Weierstrall Theorem and WBWTy is
the weak Bolzano-WeierstraB Theorem. This implies

WKL <y lim *COH and hence (lim — WKL') <y COH.
COH <w(lim — WKL'): Given some h with WKL" <y lim *h can
also prove that COH <yy h. O



Characterization of Cohesiveness

Theorem (B., Hendtlass and Kreuzer)
COH =w (lim — WKL").

Proof. (ldea.) It is known that

» WKL =w BWTg (B., Gherardi and Marcone 2012),

» COH=w WBWTpg (Kreuzer 2012),
where BWTy is the Bolzano-Weierstrall Theorem and WBWTy is
the weak Bolzano-WeierstraB Theorem. This implies

WKL <y lim *COH and hence (lim — WKL') <y COH.
COH <w(lim — WKL'): Given some h with WKL" <y lim *h can
also prove that COH <yy h. O

Theorem (B., Hendtlass and Kreuzer)
WKL’ =w lim *COH.

Proof. (Idea) Use a double jump theorem. O



Research Question

» Find other characterizations of the form

f=w(g — h).

» This is of particular interest when f is indiscriminative and
g, h are discriminative.

> In this case it establishes a bridge between the discriminative
world and the non-discriminative world since it entails

» Basically, no other characterizations of this form are known,
besides the two mentioned ones for MLR and COH.

» An interesting candidate would be, for instance 1-GEN.



Ramsey's Theorem



Ramsey's Theorem

» By C, « we denote the set of colorings c : [N]” — k.

» By 7. we denote the set of infinite homogeneous sets for the
coloring c.

» A coloring ¢ : [N]” — k is called stable, if lim;_o, c(AU{i})
exists for all A € [N]"~1.

> RTn,k : Cn,k = ZN, RT,,V/((C) = He,
» CRT,k: Cok = kx2Y, CRT,k(c) := {(c(M), M) : M € H.},

» SRT,k :C Cni =3 28, SRT k() := RTpk(c),
where dom(SRT,, x) := {c € Cp, « : c stable},



Lower Bounds on Ramsey

Theorem (B., Rakotoniaina)
c\” <wRT,, foralln>1.

Proof.(Idea.) We note that an) =sw BWT5 0 Iimé’f{”. Let
p € dom(BWT o liml ) and g := lim Y (p). Then

q(io) = lim lim ... lim p{in—1,..., o)
I1—>0Q0 12— 00 In—1—00

for all iy € N. We compute the coloring ¢ : [N]” — 2 with
C{i() <ih<..< I'n_1} = p<in_1, in_z, . I'17 i0>.

For M € RT, > we obtain c¢(M) € BWT»(q). O



Lower Bounds on Ramsey

Theorem (B., Rakotoniaina)

c\” <wRT,, foralln>1.

Proof.(Idea.) We note that an) =sw BWT5 0 Iiml;wfl]. Let
p € dom(BWT o liml ) and g := lim Y (p). Then

q(io) = lim lim ... lim p{in—1,..., o)
I1—>0Q0 12— 00 In—1—00

for all iy € N. We compute the coloring ¢ : [N]” — 2 with
C{i() <ih<..< I'n_1} = p<in_1, in_z, . I'17 i0>.

For M € RT, > we obtain c¢(M) € BWT»(q). O

Corollary

WKL <\ RT,, foralln>1, k > 2.



Products and Parallellization of Ramsey

Theorem (B., Rakotoniaina)
RTn,N X RT,H_]_,/( <sw RTn+17k+1 for all n, k> 1.
Proof. (Idea.) Given a coloring ¢ : [N]” — N with finite range

and a coloring ¢ : [N]"*! — k we construct a coloring
¢t [N]"™! — k + 1 as follows:

¢ (A) = a(A) ifAis homogeneous for ¢1
k otherwise

for all A € [N]""1. Then RT112(c™) € RT,n(c1) NRT pp1.4(c2)
and hence the desired reduction follows. O



Products and Parallellization of Ramsey

Theorem (B., Rakotoniaina)

RToN X RTpp1k <sw RTpy1 k41 forall njk > 1.

Proof. (Idea.) Given a coloring ¢ : [N]” — N with finite range
and a coloring ¢ : [N]"*! — k we construct a coloring
¢t [N]"™! — k + 1 as follows:

¢ (A) = a(A) ifAis homogeneous for ¢1
k otherwise

for all A € [N]""1. Then RT112(c™) € RT,n(c1) NRT pp1.4(c2)
and hence the desired reduction follows. O
Corollary

RT,x <wRTpi12 foralln k > 1.




Parallelization of Ramsey

Theorem (B., Rakotoniaina)

RTpk <sw RTny20 forall n k > 1.

Proof. Given a sequence (c;); of colorings ¢; : [N]” — k, we
compute a sequence (dy,)m of colorings dy, € C, xm that capture
the products RT}", and a sequence (d,})m of colorings

dt : [N]"*t — 2 by

4. J 0 if Ais homogeneous for dp,
I (A) = { 1 otherwise
for all A € [N]"1. Now, in a final step we compute a coloring
¢ [N]"*2 — 2 with ¢({m} UA) := d;}(A) for all A€ [N]"*! and
m < min(A). Given an infinite homogeneous set M € RT 2 5(c)
we determine a sequence (M;); as follows: for each fixed i € N we
first search for a number m > i in M and then we let
M :={x € M: x> m}. O



Lower Bounds

Corollary (B., Rakotoniaina)

For all n > 2 we obtain:
> lim <w SRT3.2,
» WKL' <\ RT3, (Hirschfeldt and Jockusch 2015)
» WKL <y SRT 1125.
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Upper Bounds

Theorem (Cholak, Jockusch, Slaman 2009)
RT, « <w SRT, « * COH for all n,k > 1.

Theorem (B., Rakotoniaina)

SRT 41,k <w RTpk xlim for all n, k > 1.

Proof. (ldea.) If fact, we even proved CRT:Lk =wSRT i1k O

Corollary (B., Rakotoniaina)
RTp+1.4 <w RTpx x WKL’ for all n, k > 1.

Proof. (Idea.) We use WKL’ =y lim «COH. O

Corollary

RT ok <w WKL for all n, k > 1.

Proof. (Idea.) We use WKL) = WKL « WKL'. O



Parallelization and Borel Complexity

Corollary (B. and Rakotoniaina)
RTox=w WKL foralln>1, k> 2.



Parallelization and Borel Complexity

Corollary (B. and Rakotoniaina)
RTox=w WKL foralln>1, k> 2.

Corollary

RT,k is effectively X9 . ,—measurable, but not X0, —measurable
for a// n, k> 2.




Color Separation

Theorem (Squashing Theorem)

fxg<wg = fgw g for total f, g and finitely tolerant f.
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Color Separation

Theorem (Squashing Theorem)

fxg<wg = fgw g for total f, g and finitely tolerant f.

Corollary (Dorais, Dzhafarov, Hirst, Mileti and Shafer)

RT .k <sw RTp ki1 forall n,k > 1.

Theorem (B. & Rakotoniaina, Hirschfeldt & Jockusch, Patey)
RT,x <w RTp k41 forall n, k > 1.

Proof. The assumption RT, > x RT 1 x <w RT .41 implies by
the Theorem ﬁ; <w RT .41« and hence by our lower bound
lim("=1) < WKL = R/T; <w RT 41k in contradiction to the
Cone Avoidance Theorem of Cholak, Jockusch and Slaman. Hence
RTh2 X RT i1k Zw RT pp1k for all n, k> 1. However

RTp2 X RT 11k <w RT,q1k+1 by our Product Theorem, i.e.,

RT i1k <w RTpq1 k41 forall n, k> 1. O



Ramsey’s Theorem in the Weihrauch Lattice

0
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WKL) =y ¢ 5 Ry y .

1

— RT44 RTs3y RTaz2 ¢c(4)
)

0
):5

lim®3
v

WKLG) = ¢ s

2

-
4
RT
34> RT33y RT32 <)
2

WKL =sw € » RTony ..
.
-

-3

-
-

.
RT24 > RTas y R, s
’ 2

0
}:3

~
F

lim
v

WKL =5w € - RTyy > ..

.

-

g

-

: RT
, g 14> RT13y RT12 % C)
1 1

n

v

0 .~
Iy lim=sw Gy —> Cy
v v

WKL=sw C2 €Ky =ow CF s ..

T
1
1
1

v

v
-ﬁCAﬂC3_)C2




Conclusion

1. The purpose of this talk was to demonstrate in different case
studies how algebraic properties in the Weihrauch can be
applied to prove interesting characterizations.

2. Often such characterizations boil down to an identification of
the right algebraic properties of the problems involved.

3. This often leads to very transparent and simple proofs of
properties that are otherwise hard to obtain.
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