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Kolmogorov’s Calculus of Problems and Solutions

A. Kolmogoroff, Zur Deutung der intuitionistischen Logik,
Mathematische Zeitschrift, Band 35 (1932) S. 58–65



Kolmogorov’s Calculus of Problems and Solutions

I Kolmogorov states that intuitionistic logic should be replaced
by the calculus of problems, for its objects are in reality not
theoretical propositions but rather problems.

I Kolmogorov’s calculus of problems and solutions suggests
interpretations rather of computability theoretic nature than
of proof theoretic nature.

I The Medvedev lattice has been developed as a model for
Kolmogorov’s calculus of problems (and it turned out to be a
model for an intermediate logic, called Jankov’s logic).

I We will provide another computability theoretic interpretation
of Kolmogorov’s calculus of problems and solutions.

I While “problems” have been considered as subsets A ⊆ NN in
the Medvedev lattice, we will choose a more general
interpretation.



Mathematical Problems and Solutions

Definition

A mathematical problem is a partial multi-valued map
f :⊆ X ⇒ Y .

The idea is that

I There are a certain sets of potential inputs X and outputs Y .

I The domain D = dom(f ) contains the valid instances of the
problem.

I f (x) is the set of solutions of the problem f for instance x .

Definition

A solution of a mathematical problem f :⊆ X ⇒ Y is a map
s :⊆ X ⇒ Y such that s(x) ⊆ f (x) for all x ∈ X .

We consider a problem as (algorithmically) solvable, if it has a
(computable) continuous solution.
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Examples of Mathematical Problems

I The Limit Problem is the mathematical problem

lim :⊆ NN → NN, 〈p0, p1, ...〉 7→ lim
i→∞

pi

with dom(lim) := {(xi ) : (xi ) is convergent}.
I Martin-Löf Randomness is the mathematical problem

MLR : 2N ⇒ 2N with

MLR(x) := {y ∈ 2N : y is Martin-Löf random relative to x}.

I The Cohesiveness Problem is the mathematical problem
COH : (2N)N ⇒ 2N where COH(Ri ) contains all infinite
X ⊆ N such that for all i ∈ N one of the sets

X ∩ Ri or X ∩ (N \ Ri )

is finite.
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I The Cohesiveness Problem is the mathematical problem
COH : (2N)N ⇒ 2N where COH(Ri ) contains all infinite
X ⊆ N such that for all i ∈ N one of the sets

X ∩ Ri or X ∩ (N \ Ri )

is finite.



Examples of Mathematical Problems

I The Limit Problem is the mathematical problem

lim :⊆ NN → NN, 〈p0, p1, ...〉 7→ lim
i→∞

pi

with dom(lim) := {(xi ) : (xi ) is convergent}.
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Weihrauch Reducibility

Let f :⊆ X ⇒ Y and g :⊆ Z ⇒W be two mathematical problems.

K Hg

f

x f (x)

I f is called Weihrauch reducible to g , in symbols f ≤W g , if
there are computable H :⊆ X ×W ⇒ Y and K :⊆ X ⇒ Z
such that H(id, gK ) ⊆ f and dom(f ) ⊆ dom(H(id, gK )).

I f is called strongly Weihrauch reducible to g , in symbols
f ≤sW g , if there are computable H :⊆W ⇒ Y and
K :⊆ X ⇒ Z such that HgK ⊆ f and dom(f ) ⊆ dom(HgK ).



Weihrauch Reducibility

Let f :⊆ X ⇒ Y and g :⊆ Z ⇒W be two mathematical problems.

K Hg

f

x f (x)

I f is called Weihrauch reducible to g , in symbols f ≤W g , if
there are computable H :⊆ X ×W ⇒ Y and K :⊆ X ⇒ Z
such that H(id, gK ) ⊆ f and dom(f ) ⊆ dom(H(id, gK )).

I f is called strongly Weihrauch reducible to g , in symbols
f ≤sW g , if there are computable H :⊆W ⇒ Y and
K :⊆ X ⇒ Z such that HgK ⊆ f and dom(f ) ⊆ dom(HgK ).



Weihrauch Reducibility

Let f :⊆ X ⇒ Y and g :⊆ Z ⇒W be two mathematical problems.

K Hg

f

x f (x)

I f is called Weihrauch reducible to g , in symbols f ≤W g , if
there are computable H :⊆ X ×W ⇒ Y and K :⊆ X ⇒ Z
such that H(id, gK ) ⊆ f and dom(f ) ⊆ dom(H(id, gK )).

I f is called strongly Weihrauch reducible to g , in symbols
f ≤sW g , if there are computable H :⊆W ⇒ Y and
K :⊆ X ⇒ Z such that HgK ⊆ f and dom(f ) ⊆ dom(HgK ).



Algebraic Operations in the Weihrauch Lattice

Definition

Let f , g be two mathematical problems. We consider:

I f × g : both problems are available in parallel (Product)

I f t g : both problems are available, but for each instance one
has to choose which one is used (Coproduct)

I f u g : given an instance of f and g , only one of the solutions
will be provided (Sum)

I f ∗ g : f and g can be used consecutively (Comp. Product)

I g → f : this is the simplest problem h such that f can be
reduced to g ∗ h (Implication)

I f ∗: f can be used any given finite number of times in parallel
(Star)

I f̂ : f can be used countably many times in parallel
(Parallelization)

I f ′: f can be used on the limit of the input (Jump)



Some Formal Definitions

Definition

For f :⊆ X ⇒ Y and g :⊆W ⇒ Z we define:

I f × g :⊆ X ×W ⇒ Y × Z , (x ,w) 7→ f (x)× g(w) (Product)

I f t g :⊆ X tW ⇒ Y t Z , z 7→
{
f (z) if z ∈ X
g(z) if z ∈W

(Coproduct)

I f u g :⊆ X ×W ⇒ Y t Z , (x ,w) 7→ f (x) t g(w) (Sum)

I f ∗ :⊆ X ∗ ⇒ Y ∗, f ∗ =
⊔∞

i=0 f
i (Star)

I f̂ :⊆ XN ⇒ Y N, f̂ = X∞i=0 f (Parallelization)

I Weihrauch reducibility induces a lattice with the coproduct t
as supremum and the sum u as infimum.

I Parallelization and star operation are closure operators in the
Weihrauch lattice.

I With t,×,∗ one obtains a Kleene algebra.
I The Weihrauch lattice is neither a Brouwer nor a Heyting

algebra (Higuchi und Pauly 2012).



Some Formal Definitions

Definition

For f :⊆ X ⇒ Y and g :⊆W ⇒ Z we define:

I f × g :⊆ X ×W ⇒ Y × Z , (x ,w) 7→ f (x)× g(w) (Product)

I f t g :⊆ X tW ⇒ Y t Z , z 7→
{
f (z) if z ∈ X
g(z) if z ∈W

(Coproduct)

I f u g :⊆ X ×W ⇒ Y t Z , (x ,w) 7→ f (x) t g(w) (Sum)

I f ∗ :⊆ X ∗ ⇒ Y ∗, f ∗ =
⊔∞

i=0 f
i (Star)

I f̂ :⊆ XN ⇒ Y N, f̂ = X∞i=0 f (Parallelization)

I Weihrauch reducibility induces a lattice with the coproduct t
as supremum and the sum u as infimum.

I Parallelization and star operation are closure operators in the
Weihrauch lattice.

I With t,×,∗ one obtains a Kleene algebra.
I The Weihrauch lattice is neither a Brouwer nor a Heyting

algebra (Higuchi und Pauly 2012).



Infima and Suprema

The Weihrauch lattice is not complete and infinite suprema and
infima do not always exist. There are some known existent ones.

Definition

For two mathematical problem f , g we define the compositional
product

f ∗ g := max{f0 ◦ g0 : f0≤W f and g0≤W g}

and the implication

g → f := min{h : f ≤W g ∗ h}.

The maximum and minimum is understood with respect to ≤W

and they always exist (B. and Pauly 2013).



Embedding of the Medvedev Lattice

Definition

Let A ⊆ NN.

1. By cA : NN ⇒ NN, p 7→ A we denote the constant
multi-valued function with value A ⊆ NN.

2. By id|A :⊆ NN → NN we denote the identity restricted to A.

Proposition (B. and Gherardi 2009)

Let A,B ⊆ NN, A⊕ B = 〈A× B〉, A⊗ B = 0A ∪ 1B. Then

I A≤M B ⇐⇒ cA≤W cB ⇐⇒ id|B ≤W id|A,

I cA⊕B ≡W cA × cB ≡W(cA t cB)∗≡W ̂cA t cB ,

I cA⊗B ≡W cA u cB ,

I id|A⊕B ≡W id|A × id|B ,

I id|A⊗B ≡W id|A t id|B .
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Theorems as Problems

Definition

Any theorem T of the form

(∀x ∈ X )(∃y ∈ Y ) (x ∈ D =⇒ P(x , y))

is identified with F :⊆ X ⇒ Y with dom(F ) := D and

F (x) := {y ∈ Y : P(x , y)}.

Example

Weak Weak Kőnig’s Lemma is the mathematical problem

WWKL :⊆ Tr⇒ 2N,T 7→ [T ]

with dom(WWKL) := {T ∈ Tr : µ([T ]) > 0}.
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Choice

Definition

The choice problem CX of a topological space X is the
mathematical problem induced by the statement:

I Every non-empty closed set A ⊆ X has a point x ∈ A.

Example:

I C2 is the problem of finding a point in a non-empty subset
A ⊆ {0, 1} where A is described by an infinite sequence that
can eventually remove one point from A.

I We obtain LLPO≡sW C2 where LLPO is Bishop’s Lesser
Limited Principle of Omniscience.
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Calibration of Computabiltiy Notions

C2

C2N ≡sW Ĉ2 CN

lim≡sW ĈN

complete for
finite mind change
computations

complete for
non-deterministic
computations

complete for
limit computations

(Joint results with de Brecht and Pauly 2012)



Discriminative Problems

Definition

We call f discriminative, if C2≤W f and indisciminative otherwise.
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Classical Analysis is Discriminative

C2

C2N ≡sW Ĉ2 CN

lim≡sW ĈN

Baire Category Theorem
Open Mapping Theorem
Bounded Inverse Theorem

Weak Kőnig’s Lemma
Hahn-Banach Theorem
Brouwer Fixed Point Theorem

Monotone Convergence Theorem
Fréchet-Riesz Theorem

Radon-Nikodym Theorem

(Results of B., Gherardi, Marcone, Hoyrup, Rojas, Weihrauch, ...)



Classical Computability Theory is Indiscriminative

C2

C2N ≡sW Ĉ2 CN

lim≡sW ĈN

PA

DNCN

MLR

KPT

1-GEN

HYP

JIT

COH

(Joint results with Hendtlass and Kreuzer)



Classical Computability Theory is Indiscriminative

Philosophical implications:

I Classical mathematics is discriminative.

I Computablity theory is indiscriminative.

I Hence, computability theory has no implications on classical
mathematics!

Very general:

I Every theorem that claims the existence of a Turing degree is
indiscriminative.

Exceptions in computability theory:

I Theorems such as the Low Basis Theorem are discriminative.

Perhaps that is why it is called the most applicable theorem of
computability theory?
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Examples of Implications



Characterization of Martin-Löf Randomness

Theorem (B. and Pauly)

MLR≡W(CN →WWKL).

Proof. (Sketch.) (CN →WWKL)≤W MLR: It suffices to prove
WWKL≤W CN ∗MLR. By Kučera’s Lemma, every Martin-Löf
random real p is a path in every infinite binary tree T of positive
measure up to some finite prefix. Using CN we can cut away longer
and longer prefixes of p until we find a path in T .

MLR≤W(CN →WWKL): Given some h with WWKL≤W CN ∗ h
we need to prove that MLR≤W h. Given some universal
Martin-Löf test (Ui )i , the complement A0 := 2N \ U0 is a closed
set of positive measure and given the corresponding tree T with
A = [T ] the function h will deliver some sequence q that can be
converted into a Martin-Löf random real by a finite mind change
computation. This computation can be converted into a regular
computation that yields a Martin-Löf random real. �
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Characterization of Cohesiveness

Theorem (B., Hendtlass and Kreuzer)

COH≡W(lim→WKL′).

Proof. (Idea.) It is known that

I WKL′≡W BWTR (B., Gherardi and Marcone 2012),

I COH≡W WBWTR (Kreuzer 2012),

where BWTR is the Bolzano-Weierstraß Theorem and WBWTR is
the weak Bolzano-Weierstraß Theorem. This implies

WKL′≤W lim ∗COH and hence (lim→WKL′)≤W COH.
COH≤W(lim→WKL′): Given some h with WKL′≤W lim ∗h can
also prove that COH≤W h. �

Theorem (B., Hendtlass and Kreuzer)

WKL′≡W lim ∗COH.

Proof. (Idea) Use a double jump theorem. �
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Research Question

I Find other characterizations of the form

f ≡W(g → h).

I This is of particular interest when f is indiscriminative and
g , h are discriminative.

I In this case it establishes a bridge between the discriminative
world and the non-discriminative world since it entails

h≤W g ∗ f .

I Basically, no other characterizations of this form are known,
besides the two mentioned ones for MLR and COH.

I An interesting candidate would be, for instance 1-GEN.



Ramsey’s Theorem



Ramsey’s Theorem

I By Cn,k we denote the set of colorings c : [N]n → k.

I By Hc we denote the set of infinite homogeneous sets for the
coloring c .

I A coloring c : [N]n → k is called stable, if limi→∞ c(A ∪ {i})
exists for all A ∈ [N]n−1.

I RTn,k : Cn,k ⇒ 2N,RTn,k(c) := Hc ,

I CRTn,k : Cn,k ⇒ k×2N,CRTn,k(c) := {(c(M),M) : M ∈ Hc},
I SRTn,k :⊆ Cn,k ⇒ 2N, SRTn,k(c) := RTn,k(c),

where dom(SRTn,k) := {c ∈ Cn,k : c stable},



Lower Bounds on Ramsey

Theorem (B., Rakotoniaina)

C
(n)
2 ≤W RTn,2 for all n ≥ 1.

Proof.(Idea.) We note that C
(n)
2 ≡sW BWT2 ◦ lim

[n−1]

2N
. Let

p ∈ dom(BWT2 ◦ lim
[n−1]

2N
) and q := lim

[n−1]

2N
(p). Then

q(i0) = lim
i1→∞

lim
i2→∞

... lim
in−1→∞

p〈in−1, ..., i0〉

for all i0 ∈ N. We compute the coloring c : [N]n → 2 with

c{i0 < i1 < .... < in−1} := p〈in−1, in−2, ..., i1, i0〉.

For M ∈ RTn,2 we obtain c(M) ∈ BWT2(q). �

Corollary

WKL(n)≤W R̂Tn,k for all n ≥ 1, k ≥ 2.
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Products and Parallellization of Ramsey

Theorem (B., Rakotoniaina)

RTn,N × RTn+1,k ≤sW RTn+1,k+1 for all n, k ≥ 1.

Proof. (Idea.) Given a coloring c1 : [N]n → N with finite range
and a coloring c2 : [N]n+1 → k we construct a coloring
c+ : [N]n+1 → k + 1 as follows:

c+(A) :=

{
c2(A) if A is homogeneous for c1

k otherwise

for all A ∈ [N]n+1. Then RTn+1,2(c+) ⊆ RTn,N(c1) ∩ RTn+1,k(c2)
and hence the desired reduction follows. �

Corollary

RT∗n,k ≤W RTn+1,2 for all n, k ≥ 1.
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Parallelization of Ramsey

Theorem (B., Rakotoniaina)

R̂Tn,k ≤sW RTn+2,2 for all n, k ≥ 1.

Proof. Given a sequence (ci )i of colorings ci : [N]n → k , we
compute a sequence (dm)m of colorings dm ∈ Cn,km that capture
the products RTm

n,k and a sequence (d+
m )m of colorings

d+
m : [N]n+1 → 2 by

d+
m (A) :=

{
0 if A is homogeneous for dm
1 otherwise

for all A ∈ [N]n+1. Now, in a final step we compute a coloring
c : [N]n+2 → 2 with c({m} ∪ A) := d+

m (A) for all A ∈ [N]n+1 and
m < min(A). Given an infinite homogeneous set M ∈ RTn+2,2(c)
we determine a sequence (Mi )i as follows: for each fixed i ∈ N we
first search for a number m > i in M and then we let
Mi := {x ∈ M : x > m}. �



Lower Bounds

Corollary (B., Rakotoniaina)

For all n ≥ 2 we obtain:

I lim≤W SRT3,2,

I WKL′≤W RT3,2, (Hirschfeldt and Jockusch 2015)

I WKL(n)≤W SRTn+2,2.



Upper Bounds

Theorem (Cholak, Jockusch, Slaman 2009)

RTn,k ≤W SRTn,k ∗ COH for all n, k ≥ 1.

Theorem (B., Rakotoniaina)

SRTn+1,k ≤W RTn,k ∗ lim for all n, k ≥ 1.

Proof. (Idea.) If fact, we even proved CRT′n,k ≡W SRTn+1,k . �

Corollary (B., Rakotoniaina)

RTn+1,k ≤W RTn,k ∗WKL′ for all n, k ≥ 1.

Proof. (Idea.) We use WKL′≡W lim ∗COH. �

Corollary

RTn,k ≤W WKL(n) for all n, k ≥ 1.

Proof. (Idea.) We use WKL(n+1)≡W WKL(n) ∗WKL′. �



Upper Bounds

Theorem (Cholak, Jockusch, Slaman 2009)

RTn,k ≤W SRTn,k ∗ COH for all n, k ≥ 1.

Theorem (B., Rakotoniaina)

SRTn+1,k ≤W RTn,k ∗ lim for all n, k ≥ 1.

Proof. (Idea.) If fact, we even proved CRT′n,k ≡W SRTn+1,k . �

Corollary (B., Rakotoniaina)

RTn+1,k ≤W RTn,k ∗WKL′ for all n, k ≥ 1.

Proof. (Idea.) We use WKL′≡W lim ∗COH. �

Corollary

RTn,k ≤W WKL(n) for all n, k ≥ 1.

Proof. (Idea.) We use WKL(n+1)≡W WKL(n) ∗WKL′. �



Upper Bounds

Theorem (Cholak, Jockusch, Slaman 2009)

RTn,k ≤W SRTn,k ∗ COH for all n, k ≥ 1.

Theorem (B., Rakotoniaina)

SRTn+1,k ≤W RTn,k ∗ lim for all n, k ≥ 1.

Proof. (Idea.) If fact, we even proved CRT′n,k ≡W SRTn+1,k . �

Corollary (B., Rakotoniaina)

RTn+1,k ≤W RTn,k ∗WKL′ for all n, k ≥ 1.

Proof. (Idea.) We use WKL′≡W lim ∗COH. �

Corollary

RTn,k ≤W WKL(n) for all n, k ≥ 1.

Proof. (Idea.) We use WKL(n+1)≡W WKL(n) ∗WKL′. �



Upper Bounds

Theorem (Cholak, Jockusch, Slaman 2009)

RTn,k ≤W SRTn,k ∗ COH for all n, k ≥ 1.

Theorem (B., Rakotoniaina)

SRTn+1,k ≤W RTn,k ∗ lim for all n, k ≥ 1.

Proof. (Idea.) If fact, we even proved CRT′n,k ≡W SRTn+1,k . �

Corollary (B., Rakotoniaina)

RTn+1,k ≤W RTn,k ∗WKL′ for all n, k ≥ 1.

Proof. (Idea.) We use WKL′≡W lim ∗COH. �

Corollary

RTn,k ≤W WKL(n) for all n, k ≥ 1.

Proof. (Idea.) We use WKL(n+1)≡W WKL(n) ∗WKL′. �



Upper Bounds

Theorem (Cholak, Jockusch, Slaman 2009)

RTn,k ≤W SRTn,k ∗ COH for all n, k ≥ 1.

Theorem (B., Rakotoniaina)

SRTn+1,k ≤W RTn,k ∗ lim for all n, k ≥ 1.

Proof. (Idea.) If fact, we even proved CRT′n,k ≡W SRTn+1,k . �

Corollary (B., Rakotoniaina)

RTn+1,k ≤W RTn,k ∗WKL′ for all n, k ≥ 1.

Proof. (Idea.) We use WKL′≡W lim ∗COH. �

Corollary

RTn,k ≤W WKL(n) for all n, k ≥ 1.

Proof. (Idea.) We use WKL(n+1)≡W WKL(n) ∗WKL′. �



Upper Bounds

Theorem (Cholak, Jockusch, Slaman 2009)

RTn,k ≤W SRTn,k ∗ COH for all n, k ≥ 1.

Theorem (B., Rakotoniaina)

SRTn+1,k ≤W RTn,k ∗ lim for all n, k ≥ 1.

Proof. (Idea.) If fact, we even proved CRT′n,k ≡W SRTn+1,k . �

Corollary (B., Rakotoniaina)

RTn+1,k ≤W RTn,k ∗WKL′ for all n, k ≥ 1.

Proof. (Idea.) We use WKL′≡W lim ∗COH. �

Corollary

RTn,k ≤W WKL(n) for all n, k ≥ 1.

Proof. (Idea.) We use WKL(n+1)≡W WKL(n) ∗WKL′. �



Upper Bounds

Theorem (Cholak, Jockusch, Slaman 2009)

RTn,k ≤W SRTn,k ∗ COH for all n, k ≥ 1.

Theorem (B., Rakotoniaina)

SRTn+1,k ≤W RTn,k ∗ lim for all n, k ≥ 1.

Proof. (Idea.) If fact, we even proved CRT′n,k ≡W SRTn+1,k . �

Corollary (B., Rakotoniaina)

RTn+1,k ≤W RTn,k ∗WKL′ for all n, k ≥ 1.

Proof. (Idea.) We use WKL′≡W lim ∗COH. �

Corollary

RTn,k ≤W WKL(n) for all n, k ≥ 1.

Proof. (Idea.) We use WKL(n+1)≡W WKL(n) ∗WKL′. �



Parallelization and Borel Complexity

Corollary (B. and Rakotoniaina)

R̂Tn,k ≡W WKL(n) for all n ≥ 1, k ≥ 2.

Corollary

RTn,k is effectively Σ0
n+2–measurable, but not Σ0

n+1–measurable
for all n, k ≥ 2.
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Color Separation

Theorem (Squashing Theorem)

f × g ≤W g =⇒ f̂ ≤W g for total f , g and finitely tolerant f .

Corollary (Dorais, Dzhafarov, Hirst, Mileti and Shafer)

RTn,k <sW RTn,k+1 for all n, k ≥ 1.

Theorem (B. & Rakotoniaina, Hirschfeldt & Jockusch, Patey)

RTn,k <W RTn,k+1 for all n, k ≥ 1.

Proof. The assumption RTn,2 × RTn+1,k ≤W RTn+1,k implies by

the Theorem R̂Tn,2≤W RTn+1,k and hence by our lower bound

lim(n−1)≤W WKL(n)≡W R̂Tn,2≤W RTn+1,k in contradiction to the
Cone Avoidance Theorem of Cholak, Jockusch and Slaman. Hence
RTn,2 × RTn+1,k 6≤W RTn+1,k for all n, k ≥ 1. However
RTn,2 × RTn+1,k ≤W RTn+1,k+1 by our Product Theorem, i.e.,
RTn+1,k <W RTn+1,k+1 for all n, k ≥ 1. �
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Ramsey’s Theorem in the Weihrauch Lattice

lim(4)

WKL(4) ≡sW Ĉ
(4)
2

RT4,N ... RT4,4 RT4,3 RT4,2 C
(4)
2

lim(3)

WKL(3) ≡sW Ĉ
(3)
2

RT3,N ... RT3,4 RT3,3 RT3,2 C
(3)
2

lim′′

WKL′′ ≡sW Ĉ′′2 RT2,N ... RT2,4 RT2,3 RT2,2 C′′2

lim′

WKL′ ≡sW Ĉ′2 RT1,N ... RT1,4 RT1,3 RT1,2 C′2

lim ≡sW ĈN

WKL ≡sW Ĉ2

CN

KN ≡sW C∗2 ...
C4 C3 C2

Σ0
6

Σ0
5

Σ0
4

Σ0
3

Σ0
2



Conclusion

1. The purpose of this talk was to demonstrate in different case
studies how algebraic properties in the Weihrauch can be
applied to prove interesting characterizations.

2. Often such characterizations boil down to an identification of
the right algebraic properties of the problems involved.

3. This often leads to very transparent and simple proofs of
properties that are otherwise hard to obtain.
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