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Definitions and Motivation
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Background

In complexity theory, it has been observed that problems can
be difficult in theory while being quite easy to solve in practice.

1986: Levin introduces “average-case complexity.”

2003: Kapovich, Miasnikov, Schupp and Shpilrain introduce
“generic-case complexity.”
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Density

In 2012, Jockusch, and Schupp introduce and analyze the
notion of generic computability. Informally, real is genericaly
computable if there is a computation of that real that is usually
correct.

We formalize our notion of “usually” using asymptotic density:

Definition
The density of real A is the limit of the densities of its initial
segments, limn→∞

|A∩n|
n .
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Generic and coarse computablity

Definition
A real A is generically computable if there exists a partial
computable function φ whose domain has density 1 such that
φ(n) = A(n) for all n ∈ dom(φ).

Definition
A real A is coarsely computable if there exists a total
computable function φ such that {n : φ(n) = A(n)} has density
1.

So a generic computation is a computation that usually halts,
always correctly, while a coarse computation is a computation
that always halts, usually correctly.
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Partial Oracles

Definition
Let A be a real. Then a (time-dependent) partial oracle, (A), for
A is a set of ordered triples 〈n, x , s〉 such that:
∃s
(
〈n,0, s〉 ∈ (A)

)
=⇒ n /∈ A,

∃s
(
〈n,1, s〉 ∈ (A)

)
=⇒ n ∈ A.

We think of (A) as a partial function, sending n to x . We think of
s as the number of steps it takes (A) to converge.

The domain of (A) is the set of n for which there exists such an
x , s.
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Generic reduction

Definition
Let A be a real. Then a generic oracle for A is a partial oracle
whose domain is density-1.

Note that generically computing A is equivalent to computing a
generic oracle for A.

Definition
Let A,B be reals. We say A is (uniformly) generically reducible
to B (or A ≤gen B) if there is a Turing functional φ such that for
every generic oracle (B), for B, φ(B) is a generic computation of
A.

In nonuniform generic reduction, the choice of φ is allowed to
depend on (B).
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Coarse reduction

Definition
Let A be a real. Then a coarse oracle for A is an (ordinary
Turing) oracle for a set that agrees with A on density-1.

Definition
Let A,B be reals. We say A is coarsely reducible to B (or
A ≤cor B) if there is a Turing functional φ such that for every
coarse oracle C, for B, φC is a coarse computation of A.

In nonuniform coarse reduction, the choice of φ is allowed to
depend on C.
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Observations

Fact
Uniform generic reduction and nonuniform coarse reduction
seem to be easier to work with than nonuniform generic
reduction or uniform coarse reduction.
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Techniques and Interactions
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Embedding the Turing degrees in the generic degrees

There is a natural embedding of the Turing degrees into the
generic degrees:

Definition
For any real X , let R(X ) be defined as follows.
R(X ) = {2n(2k + 1) : n ∈ X}.

So we have “stretched” every bit of X into a positive density
“column” of R(X ).

Since every generic oracle for R(X ) must include at least one
bit from every column, it must be able to compute X .

As a result, generically computing R(X ) is the same as
computing X , and working with R(X ) as a generic oracle is the
same as working with X as an oracle in the usual sense.
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Note that this embedding fails quite badly for the coarse
degrees.

Observation

If A is ∆0
2, then R(A) is coarsely computable.

What if we had done something differently?
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Definition
For any real X , let I(X ) be defined as follows.
I(X ) =

⋃
n∈X [n!, (n + 1)!).

In this case, we have “stretched” each bit of X over a larger and
larger finite initial segment of I(X ).

A generic oracle for I(X ) can “miss” finitely many bits of X , but
from some point on must have all of them.

Each bit is coded in a finite number of locations, so a coarse
oracle can take a poll. It might make finitely many mistakes
about X , but from some point on, it will be correct.
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Cofinite and Mod-Finite reducibilities

Definition
Let A,B be reals. We say A is cofinitely reducible to B (or
A ≤cf B) if there is a Turing functional φ such that for every
partial oracle (B), for B, if (B) has cofinite domain, then φ(B) is
a partial computation of A with cofinite domain.

Definition
Let A,B be reals. We say A is mod-finitely reducible to B (or
A ≤mf B) if there is a Turing functional φ C, if C =∗ B, then φC is
a computation of a set that is mod-finitely equal to A.
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Embeddings

Theorem (Dzhafarov, I.)

A ≤cf B ⇐⇒ I(A) ≤gen I(B)
A ≤mf B ⇐⇒ I(A) ≤cor I(B)

Theorem (Dzhafarov, I.)

A ≤T B ⇐⇒ R(A) ≤gen R(B)
A ≤T B ⇐⇒ R(A) ≤cf R(B)
A ≤T B ⇐⇒ R(A) ≤mf R(B)

Theorem (Dzhafarov, I.; Hirschfeldt, Jockusch, Kuyper, Schupp)

A ≤T B ⇐⇒ I(R(A)) ≤gen I(R(B)) (DI)
A ≤T B ⇐⇒ I(R(A)) ≤cor I(R(B)) (DI;HJKS)

Gregory Igusa Generic, Coarse, Cofinite, and Mod-Finite Reducibilities



Relations

Theorem (Dzhafarov, I.)

(A ≤1 B)⇒ (A ≤mf B)⇒ (A ≤cf B)⇒ (A ≤T B).
All these implications are strict.

For our purposes, the center implication is the interesting
implication. There is no implication between ≤gen and ≤cor.

It uses a “guessing trick”:
We have that A ≤mf B via φ.
By finite modification of φ, we may assume that φB = A.
Given a cofinite oracle for B, we guess at every possible value
for the bits that we do not yet have. If every guess gives the
same output when used as an oracle, then we halt and give
that output.
Compactness ensures that our domain is cofinite.
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Questions and Results
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Minimal degrees and pairs

Question
Assume A, is not generically computable. Is there a density-1
real B such that 0 <gen B ≤g A?

If the answer to the question is “yes,” then there cannot be any
minimal generic degrees, because the density-1 degrees are
dense. (I.)

If the answer to the question is “no,” then the counterexample is
half of a minimal pair for generic reduction. (I.)

Also, the generic degrees of density-1 reals are exactly the
generic degrees of coarsely computable reals.

Gregory Igusa Generic, Coarse, Cofinite, and Mod-Finite Reducibilities



Two more definitions

Definition
In the generic degrees, A is density-1 bounding if there is a
density-1 real B such that 0 <gen B ≤g A.

Definition
In the generic degrees A is quasiminimal if there is a
noncomputable B such that R(B) ≤g A.

In fact, in any of our degree structures, we say that A is
quasi-minimal if its degree lies above a nonzero embedded
Turing degree.
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Theorem (I.)
In the generic degrees, if A is not quasi-minimal, then A is
density-1 bounding.

So if we wish to attempt to build a real that is not density-1
bounding, it must be through a construction that is capable of
building sets that are not quasi-minimal.

So how does one build quasi-minimal sets?

Gregory Igusa Generic, Coarse, Cofinite, and Mod-Finite Reducibilities



Theorem (Jockusch, Schupp)
There is a quasi-minimal set.

Their set is density-1.

Theorem (I.)
For any noncomputable A, B, there is a
non-generically-computable C such that C ≤g R(A), and
C ≤g R(B).

Note: If A and B are a minimal pair in the Turing degrees, then
C must be quasi-minimal. The constructed C is density-1.
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Observation
If A is 1-generic or 1-random, then A is density-1 bounding.

Theorem (I.)

If A is noncomputable, then I(A) is density-1 bounding.

Theorem (Cholak, I.)
If A is 1-generic or 1-random, then A is quasi-minimal in the
generic degrees. In fact, A is quasi-minimal in the cofinite
degrees.
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Big Lemma (Cholak, I.)
If A is quasi-minimal in the cofinite degrees, then it is
quasi-minimal in the mod-finite, generic, and coarse degrees.

Theorem (Hirschfeldt, Jockusch, Kuyper, Schupp)
In the nonuniform coarse degrees, and therefore the uniform
coarse degrees, weakly 2-randoms are quasi-minimal, but
there exist 1-randoms that are not quasi-minimal.
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Proof of Big Lemma

If R(B) ≤mf A, then R(B) ≤cf A because of the implication
between cofinite and mod-finite reducibility.

So B must be computable.
If I(R(B)) ≤gen,cor A, then I(R(B)) ≤gen,cor R(A) because
A ≤gen,cor R(A).

But in that case, we have that R(B) ≤cf,mf A because I
embeds the Turing degrees into both the co-finite degrees
and the mod-finite degrees.

So, again, B must be computable.
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Carryovers

The Big Lemma allows us carry over the proof that 1-randoms
are quasi-minimal in the uniform generic degrees to show that
they are also quasi-minimal in the uniform coarse degrees.

A fairly short modification of the proof from HJKS allows them
to show that there exist 1-randoms that are not quasi-minimal in
the nonuniform generic degrees.

Question
Are weakly 2-randoms quasi-minimal in the nonuniform generic
degrees?
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End

Thank you for your attention.
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