
Mutual Information, the Independence Postulate,
and Depth

Christopher P. Porter
University of Florida

Varieties of Algorithmic Information
Heidelberg, Germany

June 16, 2015



Introduction

In “Forbidden Information,” Levin seeks to close a loophole in
Gödel’s incompleteness theorem (hereafter, GIT).

As cited by Levin, according to Gödel,

[I]t turns out that in the systematic establishment of the
axioms of mathematics, new axioms, which do not follow
by formal logic from those previously established, again
and again become evident. It is not at all excluded by the
negative results mentioned earlier [i.e., GIT] that
nevertheless every clearly posed mathematical yes-or-no
question is solvable in this way. For it is just this
becoming evident of more and more new axioms on the
basis of the meaning of the primitive notions that a
machine cannot imitate.



Introduction (continued)

Gödel’s loophole: Just as new axioms are established on the basis
of being evident to the mathematical community, perhaps on the
basis of such a process we might eventually come to settle all
mathematical questions; in particular, such a process may lead the
mathematical community to produce, at least in principle, a
complete, consistent extension of Peano arithmetic.

Levin’s goal is thus to show that a completion of Peano arithmetic
cannot be produced by “non-mechanical means.”



Our main goals

In this talk, the three main goals are to:

I sketch Levin’s argument that purports to close Gödel’s
loophole;

I raise some concerns about Levin’s argument; and

I discuss the merits of Levin’s argument.
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1. Technical background



Continuous semi-measures

Continuous semi-measures play a central role in our discussion.

Definition
A continuous semi-measure is a function M : 2<ω → [0, 1] such
that

(i) M(ε) = 1 and

(ii) M(σ) ≥ M(σ0) + M(σ1) for every σ ∈ 2<ω.

Hereafter, I will refer to continuous semi-measures simply as
semi-measures.



Left-c.e. semi-measures

We will restrict our attention to left-c.e. semi-measures.

A semi-measure M : 2<ω → [0, 1] is left-c.e. if, uniformly in
σ ∈ 2<ω, M(σ) is the limit of a computable, non-decreasing
sequence of rationals.



Left-c.e. semi-measures and computation

A Turing functional Φ : 2ω → 2ω is induced by a c.e. set SΦ of
pairs of strings (σ, τ) such that if (σ, τ), (σ′, τ ′) ∈ SΦ and σ � σ′,
then τ � τ ′ or τ ′ � τ .

For σ ∈ 2<ω, we define
Φ−1(σ) := {X ∈ 2ω : ∃n ∃σ′ � σ (X �n, σ′) ∈ SΦ}.

Theorem (Levin)

(i) If Φ is a Turing functional, then λΦ, defined by

λΦ(σ) = λ(Φ−1(σ))

for every σ ∈ 2<ω, is a left-c.e. semi-measure.

(ii) For every left c.e. semi-measure M, there is a Turing
functional Φ such that M = λΦ.



Universal semi-measures

Levin also established the existence of a universal semi-measure.

Theorem
There is a left-c.e. semi-measure M such that for every left-c.e.
semi-measure Q, there is some c ∈ ω such that for every σ ∈ 2<ω,

c ·M(σ) ≥ Q(σ).



The measure derived from a semi-measure

If Q is a semi-measure, we can define

Q(σ) := infn
∑

τ�σ & |τ |=n

Q(τ).

One can verify that Q is the largest measure such that Q ≤ Q
(but it is not a probability measure in general).

Proposition

If Q is a left-c.e. semi-measure induced by a Turing functional Φ,
then

Q(σ) = λ({X ∈ 2ω : X ∈ Φ−1(σ) & Φ(X ) is total}).



Negligibility

M can be seen as a universal measure (universal with respect to all
computable measures, as well as the measures derived from
left-c.e. semi-measures).

Definition
S ⊆ 2ω is negligible if M(S) = 0.



The intuition behind negligibility

Let S ⊆ 2ω.

M(S) = 0 means that the probability of producing some member
of S by means of any Turing functional equipped with any
sufficiently random oracle is 0.

To see this, one can show that

M(S) = 0 if and only if λ
(⋃
i∈ω

Φ−1
i (S)

)
= 0.

In particular, for each Φi , λ({X ∈ MLR : Φi (X ) ∈ S}) = 0.



Mutual information

The mutual information of two strings σ and τ , denoted by
I(σ : τ), is defined by

I(σ : τ) = K (σ) + K (τ)− K (σ, τ)

where K (σ, τ) := K (〈σ, τ〉).

Levin extends mutual information to infinite sequences by setting

I(X : Y ) = log
∑

σ,τ∈2<ω

2K(σ)−KX (σ)+K(τ)−KY (τ)−K(σ,τ)

= log
∑

σ,τ∈2<ω

2−K
X (σ)−KY (τ)+I(σ:τ).



2. Levin’s argument



Towards closing Gödel’s loophole

Levin arrives at Gödel’s loophole by first reviewing Gödel’s
incompleteness theorem and a strengthening of it.

I First, Gödel originally showed that there is no effective
procedure for producing a consistent completion of Peano
arithmetic.

I Second, Jockusch and Soare proved that there is no
probabilistic algorithm that yields a consistent completion of
Peano arithmetic with positive probability.

I In our terminology, they showed that the collection of
consistent completions of Peano arithmetic is negligible.



Towards closing Gödel’s loophole (continued)

Even though the possibility of producing a consistent completion of
Peano arithmetic by any combination of computable and
probabilistic means has been essentially ruled out, Levin seeks to
rule out the possibility of producing such a completion by other
“realistic means.”

What these means amount to is unclear, but as a minimum, they
include the process by which the mathematical community comes
to accept the truth of new axioms.

Let us hereafter refer to this process as process P.



The structure of Levin’s argument

Levin’s argument that purports to close Gödel’s loophole has the
following two-part structure:

1. The technical core of the argument

2. The philosophical core of the argument



The technical core of Levin’s argument

Recall that Chaitin’s Ω is defined to be

Ω :=
∑
U(σ)↓

2−|σ|,

where U is a universal, prefix-free machine.

Theorem (Levin)

Let A be a consistent completion of Peano arithmetic. Then
I(A : Ω) =∞.



The philosophical core of Levin’s argument

The main philosophical component of Levin’s argument involves
what he refers to as the independence postulate.

IP: Let X be any mathematically definable sequence and let Y be
any physically obtainable sequence. Then I(X : Y ) <∞.

These notions of mathematical definability and physical
obtainability are rather unclear; let us bracket this concern for the
moment.



Levin’s argument for closing Gödel’s loophole

1. (Reductio premise) Suppose that a consistent completion of
Peano arithmetic X can be produced by process P.

2. (Physical obtainability premise) X is thus physically
obtainable.

3. (IP premise) I(X : Y ) <∞ for all mathematically definable
sequences Y .

4. (Technical premise) I(X : Ω) =∞.

5. (Mathematical definability premise) Ω is mathematically
definable.

6. Therefore, no consistent completion of Peano arithmetic can
be produced by process P.



3. Evaluating Levin’s argument



Premises we won’t question

First, the technical premise (I(X : Ω) =∞) and the mathematical
definability premise (Ω is mathematically definable) are beyond
question.

Second, one might question whether we should accept the physical
obtainability premise (that a consistent completion of Peano
arithmetic produced by process P is thus physically obtainable),
but we will not do so here.



Evaluating the independence postulate

This leaves the independence postulate as the remaining premise
to consider.

In what follows, I will raise several questions about the status of
the IP.



Which sequences are mathematically definable?

This isn’t a serious concern.

Levin’s argument is still valid if we replace “mathematically
definable” with “∆0

2 definable” in the statement of the IP.

By using a weaker form of the IP, we can strengthen Levin’s
argument.



Which sequences are physically obtainable?

Note that the IP does not rule out the possibility that computable
sequences are physically obtainable:

For every computable sequence X and any Y ∈ 2ω, we have
I(X : Y ) <∞.

But which sequences are the physically obtainable ones?

I One possible answer: the physically obtainable sequences =
the computable sequences



Which sequences are physically obtainable? (continued)

For those who do not accept this identification, is there a principled
reason to hold that no non-computable ∆0

2 is physically obtainable?

Perhaps more worrisome: How can we account for the non-physical
obtainability of non-computable ∆0

2 sequences, which are obtained
as the limit of some computable procedures that can be physically
implemented (at least in principle)?



Which definition of mutual information?

Levin’s result depends upon a specific definition of mutual
information.

Why should we think that this is a reasonable notion of mutual
information to use?

Is there a minimal set of conditions for a notion of mutual
information that guarantees that the IP holds? Or at least one
that allows one to close Gödel’s loophole?



Implications for hypercomputation?

A number of proponents of hypercomputation have argued that it
is physically possible that the halting set can be computed by some
hypercomputational procedure.

The IP rules out this possibility.

Such a strong conclusion ought not come for free.



4. Deep objects



The significance of Levin’s argument

In this last part of the talk, I will discuss what I take to be the
significance of Levin’s argument, which is found in the technical
core of the argument.

Levin has identified an instance of a more general phenomenon,
namely the behavior of so-called deep mathematical objects.



Deep Π0
1 classes

Let P be a Π0
1 class and let T be the canonical co-c.e. tree such

that P = [T ]. Let Tn = T ∩ 2n.

P is a deep Π0
1 class if there is some computable, non-decreasing,

unbounded function h : ω → ω such that

M(Tn) ≤ 2−h(n),

where M(Tn) =
∑

σ∈Tn
M(σ).

That is, the probability of producing some initial segment of a path
through P is effectively bounded from above.



Generalizing Levin’s technical results

Theorem (Levin/Stephan)

The collection of consistent completions of Peano arithmetic forms
a deep Π0

1 class.

One can verify that every deep Π0
1 class is negligible, and thus this

result strengthens the Jockusch/Soare result referenced earlier.



Generalizing Levin’s technical results (continued)

Theorem (Bienvenu, Porter)

For every deep Π0
1 class P and every X ∈ P, we have

I(X : Ω) =∞.

Note that in light of this theorem, Levin’s argument applies to
every member of every deep Π0

1 class, not just consistent
completions of Peano arithmetic.

I shift-complex sequences;

I DNCh functions for sufficiently slow-growing functions h;

I compression functions;

I sequences of finite sets of strings of high Kolmogorov
complexity.



The fragility of deep Π0
1 classes

Theorem (Bienvenu, Porter)

The collection of deep Π0
1 classes forms a filter in the Medvedev

degrees of Π0
1 classes.

By contrast, we have:

Theorem (Bienvenu, Porter)

Every deep Π0
1 class is Muchnik equivalent to a negligible Π0

1 class
that is not deep.



Connection to Bennett’s logical depth

Bennett defined a sequence X to be logically deep if the
complexity of initial segments of X are infinitely often far from the
time-bounded complexity of initial segments of X .

Example: the halting set K is logically deep.

Theorem (Bienvenu, Porter)

Every member of a deep Π0
1 class is logically deep.



The promise of deep classes

There is a considerable amount about deep classes that we don’t
know:

I exact relationships between different deep classes in the
Medvedev degrees?

I relationship between deep classes and other notions of highly
structured objects?

I more examples of deep objects?

Despite the inadequacies of Levin’s argument, his isolation of the
basic properties of deep classes has proven to be very useful, and
perhaps will lead to further unification of notions of information in
algorithmic randomness.


