The Randomness of Empirical Data, the Simplicity of Hypotheses, and Extreme Priors

J. Schatz

University of California at Irvine

June 16, 2015

J. Schatz (UCI)

The Randomness of Empirical Data

June 16, 2015 1 / 40

Computability Theory in Philosophy of Science

- Kelly: Effective Descriptive Set Theory and Scientific Inquiry
- Empirical Data is Algorithmically Random

2 A Puzzle: Four Co-Impossible Assumptions

3 Two Possible Solutions

- Alternate Notions of Randomness
- Alternative Approaches to Probability

4 Conclusion: Looking Towards a Solution

- Some concepts used in computability bear a sort of resemblance to important concepts in the philosophy of science
- For example: decidability/determinability, randomness, etc.

- Some concepts used in computability bear a sort of resemblance to important concepts in the philosophy of science
- For example: decidability/determinability, randomness, etc.
- Isolated attempts to apply computability theory to the scientific endeavor

- Some concepts used in computability bear a sort of resemblance to important concepts in the philosophy of science
- For example: decidability/determinability, randomness, etc.
- Isolated attempts to apply computability theory to the scientific endeavor
- This project is a preliminary effort to connect these various attempts

Scientific Hypotheses and Cantor Space

- We represent scientific hypotheses as subsets of Cantor space (henceforth 2^ω)
- Recall: 2^{ω} is the set of all functions $f: \omega \to \{0, 1\}$

- We code streams of data as individual sequences of 0's and 1's
- A hypothesis is the collection of all data streams that would make the hypothesis true

- Recall the standard topology on Cantor space
- For any finite sequence s, the open fan $[s] = \{x \in 2^{\omega} | x \upharpoonright ln(s) = s\}$
- The open sets of 2^{ω} are all arbitrary unions of fans
- The closed sets are the complements of unions of fans

- Recall the standard topology on Cantor space
- For any finite sequence s, the open fan $[s] = \{x \in 2^{\omega} | x \upharpoonright ln(s) = s\}$
- The open sets of 2^{ω} are all arbitrary unions of fans
- The closed sets are the complements of unions of fans
- Ex: As $\{x \in 2^{\omega} | \exists n \in \mathbb{N}(x(n) = 1)\} = \bigcup_{n < \omega} [0^n 1]$, it is open
 - This set corresponds to the claim that a 1 will eventually be observed
- Ex: As $\{\overline{0}\} = 2^{\omega} \{x \in 2^{\omega} | \exists n \in \mathbb{N}x(n) = 1\}$, it is closed.
 - This set corresponds to the claim that a 1 will never be observed

• We can also consider measures on Cantor space as assignments of probability to hypotheses

- We can also consider measures on Cantor space as assignments of probability to hypotheses
- A probability measure μ is a function from certain subsets of 2^ω to the closed interval [0,1] st

•
$$\mu(\emptyset) = 0$$
 and $\mu(2^{\omega}) = 1$

•
$$\mu(\bigcup_{n<\mathbb{N}} E_n) = \sum_{n<\mathbb{N}} \mu(E_n)$$

- We can also consider measures on Cantor space as assignments of probability to hypotheses
- A probability measure μ is a function from certain subsets of 2^{ω} to the closed interval [0, 1] st

•
$$\mu(\emptyset) = 0$$
 and $\mu(2^{\omega}) = 1$

•
$$\mu(\bigcup_{n<\mathbb{N}} E_n) = \sum_{n<\mathbb{N}} \mu(E_n)$$

• A null-set is a set Y such that $\mu(Y) = 0$.

- We can also consider measures on Cantor space as assignments of probability to hypotheses
- A probability measure μ is a function from certain subsets of 2^ω to the closed interval [0,1] st

•
$$\mu(\emptyset)=0$$
 and $\mu(2^\omega)=1$

•
$$\mu(\bigcup_{n<\mathbb{N}} E_n) = \sum_{n<\mathbb{N}} \mu(E_n)$$

• A null-set is a set Y such that $\mu(Y) = 0$.

Theorem (Hájek 2003)

Any real-valued probability function μ must assign uncountably many sets measure 0

- We can also consider measures on Cantor space as assignments of probability to hypotheses
- A probability measure μ is a function from certain subsets of 2^ω to the closed interval [0,1] st

•
$$\mu(\emptyset)=0$$
 and $\mu(2^\omega)=1$

•
$$\mu(\bigcup_{n<\mathbb{N}} E_n) = \sum_{n<\mathbb{N}} \mu(E_n)$$

• A null-set is a set Y such that $\mu(Y) = 0$.

Theorem (Hájek 2003)

Any real-valued probability function μ must assign uncountably many sets measure 0

• It follows that null sets will be extremely common

- We can also consider the idea of updating probability assignments
- Such updating can model certain features of rational inquiry

- We can also consider the idea of updating probability assignments
- Such updating can model certain features of rational inquiry
- Before inquiry begins, one must assign somewhat arbitrary prior probabilities to each subset of 2^ω
- Standard Bayesian conditionalization allows changes to the calculated probabilities of most hypotheses through inquiry

- We can also consider the idea of updating probability assignments
- Such updating can model certain features of rational inquiry
- Before inquiry begins, one must assign somewhat arbitrary prior probabilities to each subset of 2^ω
- Standard Bayesian conditionalization allows changes to the calculated probabilities of most hypotheses through inquiry
- Sets with extreme priors, where $\mu(X) = 0$ or $\mu(X) = 1$, however will be immune to changes by conditionalization
 - Thus, the collection of null sets will remain unchanged throughout inquiry

The Philosophical Problem: The Limitations of Inquiry

- Ideally, scientific hypotheses could be decisively verified when true, and refuted when false
- But we often find hypotheses for which decisive verification or refutation fails

The Philosophical Problem: The Limitations of Inquiry

- Ideally, scientific hypotheses could be decisively verified when true, and refuted when false
- But we often find hypotheses for which decisive verification or refutation fails
- The Problem of Induction states that we cannot reliably infer a universal claim from particular instances
 - Ex: No matter how many days the sun is seen to rise, we cannot be certain that the sun will rise every day.

- Ideally, scientific hypotheses could be decisively verified when true, and refuted when false
- But we often find hypotheses for which decisive verification or refutation fails
- The Problem of Induction states that we cannot reliably infer a universal claim from particular instances
 - Ex: No matter how many days the sun is seen to rise, we cannot be certain that the sun will rise every day.
- Duhem's Thesis notes that hypotheses are often tested in groups
- When a collection of hypotheses makes a false prediction, any one of them can be rejected as the problematic assumption
 - Ex: Ptolemaic astronomy can respond to false predictions by rejecting simple planetary orbits, instead of rejecting that planets orbit the sun

- A more general problem is the underdetermination of theory by evidence
- A hypotheses is underdetermined at a time if the finite substring of evidence available at that time is consistent both with the hypotheses being true, and it being false.

- A more general problem is the underdetermination of theory by evidence
- A hypotheses is underdetermined at a time if the finite substring of evidence available at that time is consistent both with the hypotheses being true, and it being false.
- A hypothesis is locally underdetermined if it is undetermined at all times
- Ex: "All swans are white"

- A more general problem is the underdetermination of theory by evidence
- A hypotheses is underdetermined at a time if the finite substring of evidence available at that time is consistent both with the hypotheses being true, and it being false.
- A hypothesis is locally underdetermined if it is undetermined at all times
- Ex: "All swans are white"
- A hypothesis is globally underdetermined if the entire infinite string of evidence is consistent with its truth and falsity
- Ex: Theories with the same empirical consequences

- A more general problem is the underdetermination of theory by evidence
- A hypotheses is underdetermined at a time if the finite substring of evidence available at that time is consistent both with the hypotheses being true, and it being false.
- A hypothesis is locally underdetermined if it is undetermined at all times
- Ex: "All swans are white"
- A hypothesis is globally underdetermined if the entire infinite string of evidence is consistent with its truth and falsity
- Ex: Theories with the same empirical consequences
- There are degress of underdetermination: "all swans are white" is less underdetermined than "all swans (except finitely many) are white"

• As a result of these limitations on the success of scientific inquiry, Kelly argues that we must aim for something less than decisive verification and refutation for some hypotheses

- As a result of these limitations on the success of scientific inquiry, Kelly argues that we must aim for something less than decisive verification and refutation for some hypotheses
- A scientific method is a function assigning finite strings of empirical data to conjectures regarding some hypothesis
- Ex: A method for "all swans are white" could map all strings consisting entirely of white swan observations to YES, all other strings to NO

- As a result of these limitations on the success of scientific inquiry, Kelly argues that we must aim for something less than decisive verification and refutation for some hypotheses
- A scientific method is a function assigning finite strings of empirical data to conjectures regarding some hypothesis
- Ex: A method for "all swans are white" could map all strings consisting entirely of white swan observations to YES, all other strings to NO
- Kelly's Logic of Reliable Inquiry attempts to discover how successful the best method can be on hypotheses of certain levels of complexity

• Kelly: topological properties of a hypothesis reveal the degree of reliability of the best method for investigating it

- Kelly: topological properties of a hypothesis reveal the degree of reliability of the best method for investigating it
- An open set corresponds to a hypothesis that can be verified with certainty in finite time by some method
 - For {x ∈ 2^ω|∃n ∈ Nx(n) = 1}, conclude it is true only when data of the form 0ⁿ1 is observed for finite n

- Kelly: topological properties of a hypothesis reveal the degree of reliability of the best method for investigating it
- An open set corresponds to a hypothesis that can be verified with certainty in finite time by some method
 - For {x ∈ 2^ω|∃n ∈ Nx(n) = 1}, conclude it is true only when data of the form 0ⁿ1 is observed for finite n
- A closed set corresponds to a hypothesis that can be refuted with certainty in finite time by some method
 - For $\{\overline{0}\}$, conclude it is false only when data of the form $0^n 1$ is observed for finite n

- Kelly: topological properties of a hypothesis reveal the degree of reliability of the best method for investigating it
- An open set corresponds to a hypothesis that can be verified with certainty in finite time by some method
 - For {x ∈ 2^ω|∃n ∈ Nx(n) = 1}, conclude it is true only when data of the form 0ⁿ1 is observed for finite n
- A closed set corresponds to a hypothesis that can be refuted with certainty in finite time by some method
 - For $\{\overline{0}\}$, conclude it is false only when data of the form $0^n 1$ is observed for finite n
- Similar notions of reliability correspond to levels higher in the Borel hierarchy; for example, F_{σ} hypotheses will be verifiable-in-the-limit, while G_{δ} hypotheses will be refutable-in-the-limit

- A hypothesis will be both verifiable and refutable with certainty if it is clopen
- This represents the best possible case

- A hypothesis will be both verifiable and refutable with certainty if it is clopen
- This represents the best possible case
- A hypothesis is underdetermined if no method can be guaranteed to converge to a correct answer
 - This arises for all non-clopen sets.

- A hypothesis will be both verifiable and refutable with certainty if it is clopen
- This represents the best possible case
- A hypothesis is underdetermined if no method can be guaranteed to converge to a correct answer
 - This arises for all non-clopen sets.
- The Problem of Induction occurs when a hypothesis can never be verified with certainty
 - This corresponds to a hypothesis being a non-closed set

- A hypothesis will be both verifiable and refutable with certainty if it is clopen
- This represents the best possible case
- A hypothesis is underdetermined if no method can be guaranteed to converge to a correct answer
 - This arises for all non-clopen sets.
- The Problem of Induction occurs when a hypothesis can never be verified with certainty
 - This corresponds to a hypothesis being a non-closed set
- A central idea of Kelly's approach: underdetermination of a hypothesis corresponds to the complexity of the hypothesis
- "All swans are white" is topologically less complex than "all swans (except finitely many) are white"; this explains its lower degree of underdetermination

Effective Descriptive Set Theory

• The arithmetic hierarchy allows us to consider effective notions in the place of topological counterparts

Effective Descriptive Set Theory

- The arithmetic hierarchy allows us to consider effective notions in the place of topological counterparts
- A set is Σ⁰₁ if it is definable by some φ ≡ ∃xψ where ψ is a quantifier free first-order formula
Effective Descriptive Set Theory

- The arithmetic hierarchy allows us to consider effective notions in the place of topological counterparts
- A set is Σ⁰₁ if it is definable by some φ ≡ ∃xψ where ψ is a quantifier free first-order formula
- We then recursively define the hierarchy as follows:
 - A set is Π_n^0 if it is the complement of a Σ_n^0 set
 - A set is Σ_{n+1}^0 if it is definable by some $\varphi \equiv \exists x \psi$ where ψ is Π_n^0
 - A set is Δ_n^0 if it is Σ_n^0 and Π_n^0

Effective Descriptive Set Theory

- The arithmetic hierarchy allows us to consider effective notions in the place of topological counterparts
- A set is Σ_1^0 if it is definable by some $\varphi \equiv \exists x \psi$ where ψ is a quantifier free first-order formula
- We then recursively define the hierarchy as follows:
 - A set is Π_n^0 if it is the complement of a Σ_n^0 set
 - A set is $\sum_{n=1}^{0}$ if it is definable by some $\varphi \equiv \exists x \psi$ where ψ is $\prod_{n=1}^{0}$
 - A set is Δ_n^0 if it is Σ_n^0 and Π_n^0
- \bullet By classical results, the class of Σ^0_1 sets is a subset of the open sets on a topological space
- \bullet Similarly, the class of Π^0_1 sets is a subset of the closed sets on a topological space

- The arithmetic hierarchy allows us to consider effective notions in the place of topological counterparts
- A set is Σ⁰₁ if it is definable by some φ ≡ ∃xψ where ψ is a quantifier free first-order formula
- We then recursively define the hierarchy as follows:
 - A set is Π_n^0 if it is the complement of a Σ_n^0 set
 - A set is $\sum_{n=1}^{0}$ if it is definable by some $\varphi \equiv \exists x \psi$ where ψ is $\prod_{n=1}^{0}$
 - A set is Δ_n^0 if it is Σ_n^0 and Π_n^0
- \bullet By classical results, the class of Σ^0_1 sets is a subset of the open sets on a topological space
- $\bullet\,$ Similarly, the class of Π^0_1 sets is a subset of the closed sets on a topological space
- Thus, a Σ_1^0 hypothesis is verifiable, and a Π_1^0 hypothesis is refutable (by Kelly's definition)

Martin-Löf Randomness

- The second application of computability uses effective notions to explicate the intuitive notion of randomness
- As we all know, a central definitions of randomness is that of Martin-Löf

- The second application of computability uses effective notions to explicate the intuitive notion of randomness
- As we all know, a central definitions of randomness is that of Martin-Löf
- A Martin-Löf test (ML-Test) is a uniformly c.e. sequence (G_m)_{m∈ℕ} of open sets where ∀m ∈ ℕ(μ(G_m) < 2^{-m})

- The second application of computability uses effective notions to explicate the intuitive notion of randomness
- As we all know, a central definitions of randomness is that of Martin-Löf
- A Martin-Löf test (ML-Test) is a uniformly c.e. sequence (G_m)_{m∈ℕ} of open sets where ∀m ∈ ℕ(μ(G_m) < 2^{-m})
- A set x passes an ML-test $(G_m)_{m\in\mathbb{N}}$ if $x\notin\bigcap_{m\in\mathbb{N}}G_m$

- The second application of computability uses effective notions to explicate the intuitive notion of randomness
- As we all know, a central definitions of randomness is that of Martin-Löf
- A Martin-Löf test (ML-Test) is a uniformly c.e. sequence (G_m)_{m∈ℕ} of open sets where ∀m ∈ ℕ(μ(G_m) < 2^{-m})
- A set x passes an ML-test $(G_m)_{m\in\mathbb{N}}$ if $x\notin\bigcap_{m\in\mathbb{N}}G_m$
- A sequence that passes all ML-tests is called Martin-Löf Random (*MLR*)

- The second application of computability uses effective notions to explicate the intuitive notion of randomness
- As we all know, a central definitions of randomness is that of Martin-Löf
- A Martin-Löf test (ML-Test) is a uniformly c.e. sequence (G_m)_{m∈ℕ} of open sets where ∀m ∈ ℕ(μ(G_m) < 2^{-m})
- A set x passes an ML-test $(G_m)_{m\in\mathbb{N}}$ if $x\notin igcap_{m\in\mathbb{N}}G_m$
- A sequence that passes all ML-tests is called Martin-Löf Random (*MLR*)

Theorem

For any Π_1^0 null class P, there is an ML-test $(G_m)_{m\in\mathbb{N}}$ such that $P = \bigcap_{m\in\mathbb{N}} G_m$; thus, no MLR sequence can be in a Π_1^0 null class

The Randomness of Empirical Data

- Philosophers have previously claimed that empirical data is algorithmically random for various reasons
- Ex: McAllister suggests that empirical data is MLR, as empirical data should not be wholly compressible to a scientific law

The Randomness of Empirical Data

- Philosophers have previously claimed that empirical data is algorithmically random for various reasons
- Ex: McAllister suggests that empirical data is MLR, as empirical data should not be wholly compressible to a scientific law
- Regardless of this specific argument, the claim that at least some empirical data is random seems intuitively plausible
- Notions of algorithmic randomness, defining random infinite sequences of Cantor space, fit well with Kelly's approach to inquiry

The Randomness of Empirical Data

- Philosophers have previously claimed that empirical data is algorithmically random for various reasons
- Ex: McAllister suggests that empirical data is MLR, as empirical data should not be wholly compressible to a scientific law
- Regardless of this specific argument, the claim that at least some empirical data is random seems intuitively plausible
- Notions of algorithmic randomness, defining random infinite sequences of Cantor space, fit well with Kelly's approach to inquiry
- We will therefore explore adding assumptions that the streams of data are random to our model
- As MLR is a particularly well-behaved notion of randomness, we shall start by considering the assumption that data is MLR

• Kelly notes that "The effect of randomness assumptions upon logical reliability is an important issue for further study" (Kelly 1996, 63)

- Kelly notes that "The effect of randomness assumptions upon logical reliability is an important issue for further study" (Kelly 1996, 63)
- Advocates of the algorithmic randomness of empirical data argue that it explains empirical data's effectiveness as a source of information
 - Approaches to scientific inquiry that ignore randomness therefore risk missing a crucial feature

- Kelly notes that "The effect of randomness assumptions upon logical reliability is an important issue for further study" (Kelly 1996, 63)
- Advocates of the algorithmic randomness of empirical data argue that it explains empirical data's effectiveness as a source of information
 - Approaches to scientific inquiry that ignore randomness therefore risk missing a crucial feature
- A combination of these two programs thus seems initially promising

Given a particular hypothesis H, we will consider four assumptions
Refutability: H is a refutable hypothesis, and therefore a Π⁰₁ class

- Refutability: H is a refutable hypothesis, and therefore a Π_1^0 class
- Nullity: *H* is a null class

- Refutability: H is a refutable hypothesis, and therefore a Π_1^0 class
- Nullity: *H* is a null class
- Randomness: Any data stream $x \in 2^{\omega}$ that is observed must be MLR

- Refutability: H is a refutable hypothesis, and therefore a Π_1^0 class
- Nullity: *H* is a null class
- Randomness: Any data stream $x \in 2^{\omega}$ that is observed must be MLR
- Correctness: H correctly holds of the actual world

- Refutability: H is a refutable hypothesis, and therefore a Π_1^0 class
- Nullity: *H* is a null class
- Randomness: Any data stream $x \in 2^{\omega}$ that is observed must be MLR
- Correctness: H correctly holds of the actual world
- Each of these assumptions seems independently plausible
- Furthermore, there is little reason to expect they could not be jointly satisfied

Theorem

Let $H \subseteq 2^{\omega}$ be a refutable, null hypothesis, and let the actual data stream $x \in 2^{\omega}$ be MLR. Then the hypothesis H cannot be correct.

Theorem

Let $H \subseteq 2^{\omega}$ be a refutable, null hypothesis, and let the actual data stream $x \in 2^{\omega}$ be MLR. Then the hypothesis H cannot be correct.

Proof.

- By the refutability assumption, H is a Π_1^0 set.
- By the nullity assumption, $\mu(H) = 0$.
- Thus, H is Π_1^0 null class.
- By the randomness assumption, $x \in MLR$.
- But, by the earlier stated theorem, $x \in MLR$ implies $x \notin P$ for any Π_1^0 null class P.
- Thus, $x \notin H$, and so H cannot hold.

We conclude that the correctness assumption must be false.

 Given the background of Kelly's representation of hypotheses in 2^ω, our four independently plausible assumptions become incompatible

- Given the background of Kelly's representation of hypotheses in 2^ω, our four independently plausible assumptions become incompatible
- The above result amounts to the claim that given
 - That a hypothesis is syntactically definable as a quantifier-free formula preceded by a universal quantifier
 - 2 That the hypothesis was initially determined to be highly unlikely
 - That the world presents algorithmically random data

one can conclude without empirical investigation that the hypothesis is false

- Given the background of Kelly's representation of hypotheses in 2^ω, our four independently plausible assumptions become incompatible
- The above result amounts to the claim that given
 - That a hypothesis is syntactically definable as a quantifier-free formula preceded by a universal quantifier
 - 2 That the hypothesis was initially determined to be highly unlikely
 - That the world presents algorithmically random data

one can conclude without empirical investigation that the hypothesis is false

• Such a claim seems to misrepresent the nature of hypothesis testing and the capabilities of human investigators

• Both Kelly's approach to modeling scientific inquiry and the claim that data is random seemed quite fruitful

- Both Kelly's approach to modeling scientific inquiry and the claim that data is random seemed quite fruitful
- With the goal of generating a more comprehensive understanding of hypothesis testing through empirical data, we set out to combine the approaches

- Both Kelly's approach to modeling scientific inquiry and the claim that data is random seemed quite fruitful
- With the goal of generating a more comprehensive understanding of hypothesis testing through empirical data, we set out to combine the approaches
- But a simple combination of the assumptions of the approaches leads to an immediate seeming absurdity
- Thus, one seems forced to alter some aspect(s) of one or both approaches to allow a more satisfactory combination

• Two responses to the puzzle are initially plausible, and merit further exploration:

- Two responses to the puzzle are initially plausible, and merit further exploration:
 - Empirical data is algorithmically random (in some sense), but not this sense is not MLR

- Two responses to the puzzle are initially plausible, and merit further exploration:
 - Empirical data is algorithmically random (in some sense), but not this sense is not *MLR*
 - The underlying probability framework should be altered with regards to its treatment of null hypotheses

- Two responses to the puzzle are initially plausible, and merit further exploration:
 - Empirical data is algorithmically random (in some sense), but not this sense is not MLR
 - The underlying probability framework should be altered with regards to its treatment of null hypotheses
- For the remainder of this talk, we will explore both responses

• The first potential solution is to accept that data is algorithmically random, but formalize this claim with a non-*MLR* notion of randomness

- The first potential solution is to accept that data is algorithmically random, but formalize this claim with a non-*MLR* notion of randomness
- Twardy, Gardner, and Dowe (2005) independently provide support for this claim

- The first potential solution is to accept that data is algorithmically random, but formalize this claim with a non-*MLR* notion of randomness
- Twardy, Gardner, and Dowe (2005) independently provide support for this claim
- Recall: By Schnorr's theorem, even the best description of any finite initial sequence of length *l* of an *MLR* data stream cannot be shorter than *l* - *b* for some fixed finite *b*

- The first potential solution is to accept that data is algorithmically random, but formalize this claim with a non-*MLR* notion of randomness
- Twardy, Gardner, and Dowe (2005) independently provide support for this claim
- Recall: By Schnorr's theorem, even the best description of any finite initial sequence of length *I* of an *MLR* data stream cannot be shorter than *I* - *b* for some fixed finite *b*
- As *I* → ∞, we thus find that the maximum compression of initial sequences of data through scientific laws goes to 0
- The first potential solution is to accept that data is algorithmically random, but formalize this claim with a non-*MLR* notion of randomness
- Twardy, Gardner, and Dowe (2005) independently provide support for this claim
- Recall: By Schnorr's theorem, even the best description of any finite initial sequence of length *I* of an *MLR* data stream cannot be shorter than *I* - *b* for some fixed finite *b*
- As *I* → ∞, we thus find that the maximum compression of initial sequences of data through scientific laws goes to 0
- This characterizes scientific explanation as wholly ineffective.
- So perhaps a notion of randomness with a less severe incompressibility property would be preferable

The Zoo of Randomness Notions

• Furthermore, there is a wide variety of alternative notions of algorithmic randomness¹

¹Image credit to Antoine Taveneaux

J. Schatz (UCI)

- To solve the puzzle, this notion would have to permit random sequences being contained in a Π_1^0 null class
- Additionally, this approach to the puzzle aims to find a formal explication of randomness that is faithful to the pre-theoretic notion

- To solve the puzzle, this notion would have to permit random sequences being contained in a Π_1^0 null class
- Additionally, this approach to the puzzle aims to find a formal explication of randomness that is faithful to the pre-theoretic notion
- A particularly low-strength notion of randomness, namely Weak Randomness (WR), is characterized by avoiding Π⁰₁ classes
- So any acceptable alternative to MLR must fail to imply WR

A More Restricted Zoo of Randomness Notions

• The need to avoid *WR* actually poses a strong constraint on the notions of randomness that are acceptable

- A notion of stochasticity is met if all the (in some sense) computable subsequences of the set satisfy the law of large numbers
- Different notions of stochasticity identify the relevant sense of computability in different ways

- A notion of stochasticity is met if all the (in some sense) computable subsequences of the set satisfy the law of large numbers
- Different notions of stochasticity identify the relevant sense of computability in different ways
- Kolmogorov-Loveland Stochasticity (*KLS*) considers all subsequences generated by a decidable, non-monotonic function on the data sequence

- A notion of stochasticity is met if all the (in some sense) computable subsequences of the set satisfy the law of large numbers
- Different notions of stochasticity identify the relevant sense of computability in different ways
- Kolmogorov-Loveland Stochasticity (*KLS*) considers all subsequences generated by a decidable, non-monotonic function on the data sequence
- Formally, a set X is KLS if no computable selection function has as its range a subset of X with disproportionate numbers of 0's and 1's

 $\textit{KLS} \not\rightarrow \textit{WR} \textit{ and } \textit{WR} \not\rightarrow \textit{KLS}$

• KLS is thus formally capable of solving the puzzle

 $\textit{KLS} \not\rightarrow \textit{WR} \textit{ and } \textit{WR} \not\rightarrow \textit{KLS}$

- KLS is thus formally capable of solving the puzzle
- Additionally, KLS meets Twardy et al's challenge regarding the proper extent of incompressibility

KLS $\not\rightarrow$ WR and WR $\not\rightarrow$ KLS

- KLS is thus formally capable of solving the puzzle
- Additionally, *KLS* meets Twardy et al's challenge regarding the proper extent of incompressibility
- As our solution would require a non-*WR* data sequence, there will be no finite limit on the data's maximum compression

KLS $\not\rightarrow$ WR and WR $\not\rightarrow$ KLS

- KLS is thus formally capable of solving the puzzle
- Additionally, *KLS* meets Twardy et al's challenge regarding the proper extent of incompressibility
- As our solution would require a non-*WR* data sequence, there will be no finite limit on the data's maximum compression
- If a set X is KLS, then for any c there will be infinitely many lengths n such that the shortest description of X will be greater than c * log(n)
 - Thus, we retain McAllister's intuition that empirical data should never be wholly compressible to a finite scientific law

- Notions of stochasticity focus on capturing a particular intuitive property of randomness
 - Namely, that fair coin tosses are random, and unfair coin tosses are non-random

- Notions of stochasticity focus on capturing a particular intuitive property of randomness
 - Namely, that fair coin tosses are random, and unfair coin tosses are non-random
- One of the original proposed notions of randomness, von Mises's Kollektivs definition, aimed to model just this property
- Martin-Löf rejects the Kollektivs definition as being unmotivated

- Notions of stochasticity focus on capturing a particular intuitive property of randomness
 - Namely, that fair coin tosses are random, and unfair coin tosses are non-random
- One of the original proposed notions of randomness, von Mises's Kollektivs definition, aimed to model just this property
- Martin-Löf rejects the Kollektivs definition as being unmotivated
 - Even given the limited goal of just capturing the fair/unfair coin toss distinction, Martin-Löf shows that Kollektivs cannot adequately succeed

- Notions of stochasticity focus on capturing a particular intuitive property of randomness
 - Namely, that fair coin tosses are random, and unfair coin tosses are non-random
- One of the original proposed notions of randomness, von Mises's Kollektivs definition, aimed to model just this property
- Martin-Löf rejects the Kollektivs definition as being unmotivated
 - Even given the limited goal of just capturing the fair/unfair coin toss distinction, Martin-Löf shows that Kollektivs cannot adequately succeed
 - In particular, Kollektivs characterizes as random a sequence that at every point have a relative frequency of 1's greater than $\frac{1}{2}$

- Notions of stochasticity focus on capturing a particular intuitive property of randomness
 - Namely, that fair coin tosses are random, and unfair coin tosses are non-random
- One of the original proposed notions of randomness, von Mises's Kollektivs definition, aimed to model just this property
- Martin-Löf rejects the Kollektivs definition as being unmotivated
 - Even given the limited goal of just capturing the fair/unfair coin toss distinction, Martin-Löf shows that Kollektivs cannot adequately succeed
 - In particular, Kollektivs characterizes as random a sequence that at every point have a relative frequency of 1's greater than $\frac{1}{2}$
 - Yet "No one would be satisfied with such a sequence as an idealization of actual coin tossing... we should certainly declare the coin to be biased." (Martin-Löf, 1969)

- *KLS* was proposed to solve precisely this problem, grounding randomness on a more adequate distinction between fair and unfair coin tosses
- But it was recently found that...

- *KLS* was proposed to solve precisely this problem, grounding randomness on a more adequate distinction between fair and unfair coin tosses
- But it was recently found that...

Theorem (Merkle 2003)

There is a KLS set X such that for all $I \in \mathbb{N}$, $X \upharpoonright I$ has a higher frequency of 1's than 0's

- *KLS* was proposed to solve precisely this problem, grounding randomness on a more adequate distinction between fair and unfair coin tosses
- But it was recently found that...

Theorem (Merkle 2003)

There is a KLS set X such that for all $I \in \mathbb{N}$, $X \upharpoonright I$ has a higher frequency of 1's than 0's

- We thus find that *KLS* is susceptible to the very problem that motivated its creation
- While *KLS* is proposed as a notion of randomness for its ability to correctly distinguish fair and unfair coin tosses, it is unsuccessful in this capacity

Motivating KLS as a Notion of Randomness

- *KLS* is defended as a notion of algorithmic randomness wholly on the basis of its connection to the statistical concept of fair coin tosses
 - Resolving Martin-Löf's critique of Kollektivs simply is the motivation for developing *KLS*

Motivating KLS as a Notion of Randomness

- *KLS* is defended as a notion of algorithmic randomness wholly on the basis of its connection to the statistical concept of fair coin tosses
 - Resolving Martin-Löf's critique of Kollektivs simply is the motivation for developing *KLS*
- Yet, Merkle's result demonstrates that *KLS* is unsuccessful in avoiding this critique
- Thus, *KLS* is left without any significant motivation (as an explication of the concept of randomness)

Motivating KLS as a Notion of Randomness

- *KLS* is defended as a notion of algorithmic randomness wholly on the basis of its connection to the statistical concept of fair coin tosses
 - Resolving Martin-Löf's critique of Kollektivs simply is the motivation for developing *KLS*
- Yet, Merkle's result demonstrates that *KLS* is unsuccessful in avoiding this critique
- Thus, *KLS* is left without any significant motivation (as an explication of the concept of randomness)
- It is unclear that KLS functions as a notion of randomness at all

- *KLS* is defended as a notion of algorithmic randomness wholly on the basis of its connection to the statistical concept of fair coin tosses
 - Resolving Martin-Löf's critique of Kollektivs simply is the motivation for developing *KLS*
- Yet, Merkle's result demonstrates that *KLS* is unsuccessful in avoiding this critique
- Thus, *KLS* is left without any significant motivation (as an explication of the concept of randomness)
- It is unclear that KLS functions as a notion of randomness at all
- While it is technically capable of solving the puzzle, we conclude that *KLS* is nonetheless not able to satisfactorily formalize the claim that data is random

• We thus find to a significant extent that the well-studied notions of algorithmic randomness are unsuited for combination with Kelly's approach

- We thus find to a significant extent that the well-studied notions of algorithmic randomness are unsuited for combination with Kelly's approach
- The vast majority of randomness notions imply *WR*, and therefore entail our puzzle

- We thus find to a significant extent that the well-studied notions of algorithmic randomness are unsuited for combination with Kelly's approach
- The vast majority of randomness notions imply *WR*, and therefore entail our puzzle
- The most salient alternatives, the stochasticity notions, can solve the puzzle, but are philosophically unmotivated for the task

- We thus find to a significant extent that the well-studied notions of algorithmic randomness are unsuited for combination with Kelly's approach
- The vast majority of randomness notions imply *WR*, and therefore entail our puzzle
- The most salient alternatives, the stochasticity notions, can solve the puzzle, but are philosophically unmotivated for the task
- Any solution to the puzzle relying on alternative explications of randomness will thus need to rely on less well-explored alternatives

- We thus find to a significant extent that the well-studied notions of algorithmic randomness are unsuited for combination with Kelly's approach
- The vast majority of randomness notions imply *WR*, and therefore entail our puzzle
- The most salient alternatives, the stochasticity notions, can solve the puzzle, but are philosophically unmotivated for the task
- Any solution to the puzzle relying on alternative explications of randomness will thus need to rely on less well-explored alternatives
 - One promising avenue of future study is notions of pseudorandomness from complexity theory.

- Alternatively, one could retain the claim that empirical data is random in the sense of *MLR*
- One would then seek to mitigate the unintuitive consequences of the puzzle

- Alternatively, one could retain the claim that empirical data is random in the sense of *MLR*
- One would then seek to mitigate the unintuitive consequences of the puzzle
- We will focus on the nullity assumption
- Two distinct ways forward might be to limit the ubiquity of null hypotheses, or find compelling argument that these hypotheses can be ignored in a model of hypothesis testing

- An obvious way to restrict the extent of null hypotheses would be to require a measure on be *regular*
- A measure μ is regular if it only assigns value 0 to logical contradictions

- An obvious way to restrict the extent of null hypotheses would be to require a measure on be *regular*
- A measure μ is regular if it only assigns value 0 to logical contradictions
- Recall that we identified hypotheses with subsets of 2^{ω} , not sentences
- Thus, there is only one logically impossible hypothesis (corresponding to \emptyset)

- An obvious way to restrict the extent of null hypotheses would be to require a measure on be *regular*
- A measure μ is regular if it only assigns value 0 to logical contradictions
- Recall that we identified hypotheses with subsets of 2^{ω} , not sentences
- Thus, there is only one logically impossible hypothesis (corresponding to \emptyset)
- But by Hájek's result, there must be uncountably many null hypotheses

- An obvious way to restrict the extent of null hypotheses would be to require a measure on be *regular*
- A measure μ is regular if it only assigns value 0 to logical contradictions
- Recall that we identified hypotheses with subsets of 2^{ω} , not sentences
- Thus, there is only one logically impossible hypothesis (corresponding to \emptyset)
- But by Hájek's result, there must be uncountably many null hypotheses
- Thus, regularity cannot be reasonably required of measures in the current context

An Unsuccessful Solution: Alernative Conditionalization

- Recall that on standard Bayesian conditionalization, a measure 0 hypothesis cannot be conditionalized on
 - This prevents Bayesian conditionalization from providing guidance in the event of a null hypothesis being observed
An Unsuccessful Solution: Alernative Conditionalization

- Recall that on standard Bayesian conditionalization, a measure 0 hypothesis cannot be conditionalized on
 - This prevents Bayesian conditionalization from providing guidance in the event of a null hypothesis being observed
- Such limitations can be seen as problematic, leading to proposed alternative approaches to conditionalization

An Unsuccessful Solution: Alernative Conditionalization

- Recall that on standard Bayesian conditionalization, a measure 0 hypothesis cannot be conditionalized on
 - This prevents Bayesian conditionalization from providing guidance in the event of a null hypothesis being observed
- Such limitations can be seen as problematic, leading to proposed alternative approaches to conditionalization
- A particularly salient alternative is presented by Rényi, who takes conditional probabilities as primitive
- This enables conditionalization to be defined on null events in Rényi's conditional probability spaces

An Unsuccessful Solution: Alernative Conditionalization

- Recall that on standard Bayesian conditionalization, a measure 0 hypothesis cannot be conditionalized on
 - This prevents Bayesian conditionalization from providing guidance in the event of a null hypothesis being observed
- Such limitations can be seen as problematic, leading to proposed alternative approaches to conditionalization
- A particularly salient alternative is presented by Rényi, who takes conditional probabilities as primitive
- This enables conditionalization to be defined on null events in Rényi's conditional probability spaces
- However, once data is fixed, as it must be in a model of hypothesis testing, Rényi's second axiom dictates that the alternative approach collapses into the standard account

A Potential Way Foward

- Thus, neither method of reducing the extent or importance of non-trivial null hypotheses is successful
- The ubiquity of such hypotheses must therefore be accepted

- Thus, neither method of reducing the extent or importance of non-trivial null hypotheses is successful
- The ubiquity of such hypotheses must therefore be accepted
- Let C be a countable collection of Borel subsets of Cantor space. Then say that a probability measure μ is C-regular if it satisfies the following condition:

$$(\mathcal{X} \in \mathcal{C} \And \mathcal{X} \neq \emptyset) \Longrightarrow \mu(\mathcal{X}) > 0 \tag{1}$$

- Thus, neither method of reducing the extent or importance of non-trivial null hypotheses is successful
- The ubiquity of such hypotheses must therefore be accepted
- Let C be a countable collection of Borel subsets of Cantor space. Then say that a probability measure μ is C-regular if it satisfies the following condition:

$$(\mathcal{X} \in \mathcal{C} \& \mathcal{X} \neq \emptyset) \Longrightarrow \mu(\mathcal{X}) > 0$$
 (1)

- Let C include some significant extent of the Π_1^0 classes
- \bullet Perhaps we could restrict attention to only measures that are $\mathcal{C}\text{-}\mathsf{regular}$
 - $\bullet\,$ Then the scope of the Π^0_1 null hypotheses would be significantly limited, effectively

 Letting μ be a C-regular probability measure, define a μ-ML-test to be a uniformly c.e. decreasing sequence of effectively open classes U_n for n ∈ N such that μ(U_n) < 2⁻ⁿ.

- Letting μ be a C-regular probability measure, define a μ-ML-test to be a uniformly c.e. decreasing sequence of effectively open classes U_n for n ∈ N such that μ(U_n) < 2⁻ⁿ.
- Define x to be μ -ML-random (MLR_{μ}) if for any μ -ML-test (U_n) $_{n \in \mathbb{N}}$, $x \notin \bigcap_{n \in \mathbb{N}} U_n$

- Letting μ be a C-regular probability measure, define a μ-ML-test to be a uniformly c.e. decreasing sequence of effectively open classes U_n for n ∈ N such that μ(U_n) < 2⁻ⁿ.
- Define x to be μ -ML-random (MLR_{μ}) if for any μ -ML-test (U_n) $_{n \in \mathbb{N}}$, $x \notin \bigcap_{n \in \mathbb{N}} U_n$
- The question arises of whether MLR_{μ} provides a satisfying explication of the intuitive notion of randomness

- Letting μ be a C-regular probability measure, define a μ-ML-test to be a uniformly c.e. decreasing sequence of effectively open classes U_n for n ∈ N such that μ(U_n) < 2⁻ⁿ.
- Define x to be μ -ML-random (MLR_{μ}) if for any μ -ML-test (U_n) $_{n \in \mathbb{N}}$, $x \notin \bigcap_{n \in \mathbb{N}} U_n$
- The question arises of whether MLR_{μ} provides a satisfying explication of the intuitive notion of randomness

Theorem

Let μ be a computable measure on 2^{ω} . Then there is a universal test $(\widehat{U}_n)_{n\in\mathbb{N}}$ such that for all $x, x \in MLR_{\mu}$ if and only if $x \notin \bigcap_{n\in\mathbb{N}} \widehat{U}_n$

- Letting μ be a C-regular probability measure, define a μ-ML-test to be a uniformly c.e. decreasing sequence of effectively open classes U_n for n ∈ N such that μ(U_n) < 2⁻ⁿ.
- Define x to be μ -ML-random (MLR_{μ}) if for any μ -ML-test (U_n) $_{n \in \mathbb{N}}$, $x \notin \bigcap_{n \in \mathbb{N}} U_n$
- The question arises of whether MLR_{μ} provides a satisfying explication of the intuitive notion of randomness

Theorem

Let μ be a computable measure on 2^{ω} . Then there is a universal test $(\widehat{U}_n)_{n\in\mathbb{N}}$ such that for all $x, x \in MLR_{\mu}$ if and only if $x \notin \bigcap_{n\in\mathbb{N}} \widehat{U_n}$

• This provides strong preliminary support for the feasibility of MLR_{μ} , provided that a computable C-regular measure μ is itself plausible

- Letting μ be a C-regular probability measure, define a μ-ML-test to be a uniformly c.e. decreasing sequence of effectively open classes U_n for n ∈ N such that μ(U_n) < 2⁻ⁿ.
- Define x to be μ -ML-random (MLR_{μ}) if for any μ -ML-test (U_n) $_{n \in \mathbb{N}}$, $x \notin \bigcap_{n \in \mathbb{N}} U_n$
- The question arises of whether MLR_{μ} provides a satisfying explication of the intuitive notion of randomness

Theorem

Let μ be a computable measure on 2^{ω} . Then there is a universal test $(\widehat{U}_n)_{n\in\mathbb{N}}$ such that for all $x, x \in MLR_{\mu}$ if and only if $x \notin \bigcap_{n\in\mathbb{N}} \widehat{U}_n$

- This provides strong preliminary support for the feasibility of MLR_{μ} , provided that a computable C-regular measure μ is itself plausible
- It bears further exploration on whether computability and *C*-regularity requirements, for some meaningful *C*, can be justified

- We found a puzzling incompatibility between Kelly's approach to modeling inquiry and intuitive assumptions of the randomness of empirical data
- This incompatibility can be expressed as the co-impossibility of four assumptions: refutability, nullity, randomness, and correctness

- We found a puzzling incompatibility between Kelly's approach to modeling inquiry and intuitive assumptions of the randomness of empirical data
- This incompatibility can be expressed as the co-impossibility of four assumptions: refutability, nullity, randomness, and correctness
- A technically and philosophically satisfying solution to the puzzle is not readily forthcoming
- Either potential route to a solution requires sustained mathematical and philosophical exploration of less well-studied notions of algorithmic randomness

Bibliography

- Hájek, Alan. "What Conditional Probability Could Not Be." Synthese 137.3 (2003): 273-323.
- Kelly, Kevin T. The Logic of Reliable Inquiry. New York: Oxford UP, 1996.
- Loveland, Donald. "A New Interpretation of the Von Mises' Concept of Random Sequence." Zeitschrift Fr Mathematische Logik Und Grundlagen Der Mathematik 12.1 (1966): 279-94.
- Martin-Löf, Per. "The Literature on Von Mises' Kollektivs Revisited." Theoria 35.1 (1969): 12-37.
- McAllister, James W. "Algorithmic Randomness in Empirical Data." Studies in History and Philosophy of Science Part A 34.3 (2003): 633-46.
- Merkle, Wolfgang. "The Kolmogorov-Loveland Stochastic Sequences Are Not Closedunder Selecting Subsequences." Journal of Symbolic Logic 68.4 (2003): 1362-376.

Bibliography Continued

- von Mises, R. "Grundlagen Der Wahrscheinlichkeitsrechnung." Mathematische Zeitschrift 5.1-2 (1919): 52-99.
- von Mises, R. Wahrscheinlichkeit, Statistik Und Wahrheit. Wien: Springer, 1972.
- Nies, Andre. Computability and Randomness. Oxford: Oxford UP, 2009.
- Porter, Christopher P. "Trivial Measures Are Not so Trivial." Theory of Computing Systems 56.3 (2015): 487-512.
- Rényi, Alfred. Foundations of Probability. San Francisco: Holden-Day, 1970.
- Twardy, Charles, Steve Gardner, and David L. Dowe. "Empirical Data Sets Are Algorithmically Compressible: Reply to McAllister?" Studies in History and Philosophy of Science Part A 36.2 (2005): 391-402.
- Wang, Yongge. Randomness and Complexity. Diss. Heidelberg U, 1996.

• Thanks to everyone for listening, and special thanks to Sean Walsh and Chris Porter for their extremely helpful guidance while pursuing this project!