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Overview

1 Computability Theory in Philosophy of Science
Kelly: Effective Descriptive Set Theory and Scientific Inquiry
Empirical Data is Algorithmically Random
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J. Schatz (UCI) The Randomness of Empirical Data June 16, 2015 2 / 40



Two Philosophical Uses of Computability

Some concepts used in computability bear a sort of resemblance to
important concepts in the philosophy of science

For example: decidability/determinability, randomness, etc.

Isolated attempts to apply computability theory to the scientific
endeavor

This project is a preliminary effort to connect these various attempts
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Scientific Hypotheses and Cantor Space

We represent scientific hypotheses as subsets of Cantor space
(henceforth 2ω)

Recall: 2ω is the set of all functions f : ω → {0, 1}

∅

0

00

. . .. . .

01

. . .. . .

1

10

. . .. . .

11

. . .. . .

We code streams of data as individual sequences of 0’s and 1’s

A hypothesis is the collection of all data streams that would make the
hypothesis true
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The Topology of Cantor Space

Recall the standard topology on Cantor space

For any finite sequence s, the open fan [s] = {x ∈ 2ω|x � ln(s) = s}
The open sets of 2ω are all arbitrary unions of fans

The closed sets are the complements of unions of fans

Ex: As {x ∈ 2ω|∃n ∈ N(x(n) = 1)} =
⋃

n<ω[0n1], it is open

This set corresponds to the claim that a 1 will eventually be observed

Ex: As {0} = 2ω − {x ∈ 2ω|∃n ∈ Nx(n) = 1}, it is closed.

This set corresponds to the claim that a 1 will never be observed
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Measures on Cantor Space

We can also consider measures on Cantor space as assignments of
probability to hypotheses

A probability measure µ is a function from certain subsets of 2ω to
the closed interval [0, 1] st

µ(∅) = 0 and µ(2ω) = 1
µ(
⋃

n<N En) = Σn<Nµ(En)

A null-set is a set Y such that µ(Y ) = 0.

Theorem (Hájek 2003)

Any real-valued probability function µ must assign uncountably many sets
measure 0

It follows that null sets will be extremely common
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Null Sets and Conditionalization

We can also consider the idea of updating probability assignments

Such updating can model certain features of rational inquiry

Before inquiry begins, one must assign somewhat arbitrary prior
probabilities to each subset of 2ω

Standard Bayesian conditionalization allows changes to the calculated
probabilities of most hypotheses through inquiry

Sets with extreme priors, where µ(X ) = 0 or µ(X ) = 1, however will
be immune to changes by conditionalization

Thus, the collection of null sets will remain unchanged throughout
inquiry
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The Philosophical Problem: The Limitations of Inquiry

Ideally, scientific hypotheses could be decisively verified when true,
and refuted when false

But we often find hypotheses for which decisive verification or
refutation fails

The Problem of Induction states that we cannot reliably infer a
universal claim from particular instances

Ex: No matter how many days the sun is seen to rise, we cannot be
certain that the sun will rise every day.

Duhem’s Thesis notes that hypotheses are often tested in groups

When a collection of hypotheses makes a false prediction, any one of
them can be rejected as the problematic assumption

Ex: Ptolemaic astronomy can respond to false predictions by rejecting
simple planetary orbits, instead of rejecting that planets orbit the sun
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The Problem of Underdetermination

A more general problem is the underdetermination of theory by
evidence

A hypotheses is underdetermined at a time if the finite substring of
evidence available at that time is consistent both with the hypotheses
being true, and it being false.

A hypothesis is locally underdetermined if it is undetermined at all
times

Ex: “All swans are white”

A hypothesis is globally underdetermined if the entire infinite string of
evidence is consistent with its truth and falsity

Ex: Theories with the same empirical consequences

There are degress of underdetermination: “all swans are white” is less
underdetermined than “all swans (except finitely many) are white”
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Reliable Inquiry

As a result of these limitations on the success of scientific inquiry,
Kelly argues that we must aim for something less than decisive
verification and refutation for some hypotheses

A scientific method is a function assigning finite strings of empirical
data to conjectures regarding some hypothesis

Ex: A method for “all swans are white” could map all strings
consisting entirely of white swan observations to YES, all other
strings to NO

Kelly’s Logic of Reliable Inquiry attempts to discover how successful
the best method can be on hypotheses of certain levels of complexity
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Topology as Reliable Inquiry

Kelly: topological properties of a hypothesis reveal the degree of
reliability of the best method for investigating it

An open set corresponds to a hypothesis that can be verified with
certainty in finite time by some method

For {x ∈ 2ω|∃n ∈ Nx(n) = 1}, conclude it is true only when data of
the form 0n1 is observed for finite n

A closed set corresponds to a hypothesis that can be refuted with
certainty in finite time by some method

For {0}, conclude it is false only when data of the form 0n1 is observed
for finite n

Similar notions of reliability correspond to levels higher in the Borel
hierarchy; for example, Fσ hypotheses will be verifiable-in-the-limit,
while Gδ hypotheses will be refutable-in-the-limit
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The Problems of Inquiry Reconsidered

A hypothesis will be both verifiable and refutable with certainty if it is
clopen

This represents the best possible case

A hypothesis is underdetermined if no method can be guaranteed to
converge to a correct answer

This arises for all non-clopen sets.

The Problem of Induction occurs when a hypothesis can never be
verified with certainty

This corresponds to a hypothesis being a non-closed set

A central idea of Kelly’s approach: underdetermination of a
hypothesis corresponds to the complexity of the hypothesis

“All swans are white” is topologically less complex than “all swans
(except finitely many) are white”; this explains its lower degree of
underdetermination
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Effective Descriptive Set Theory

The arithmetic hierarchy allows us to consider effective notions in the
place of topological counterparts

A set is Σ0
1 if it is definable by some ϕ ≡ ∃xψ where ψ is a quantifier

free first-order formula

We then recursively define the hierarchy as follows:

A set is Π0
n if it is the complement of a Σ0

n set
A set is Σ0

n+1 if it is definable by some ϕ ≡ ∃xψ where ψ is Π0
n

A set is ∆0
n if it is Σ0

n and Π0
n

By classical results, the class of Σ0
1 sets is a subset of the open sets

on a topological space

Similarly, the class of Π0
1 sets is a subset of the closed sets on a

topological space

Thus, a Σ0
1 hypothesis is verifiable, and a Π0

1 hypothesis is refutable
(by Kelly’s definition)
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Martin-Löf Randomness

The second application of computability uses effective notions to
explicate the intuitive notion of randomness

As we all know, a central definitions of randomness is that of
Martin-Löf

A Martin-Löf test (ML-Test) is a uniformly c.e. sequence (Gm)m∈N of
open sets where ∀m ∈ N(µ(Gm) < 2−m)

A set x passes an ML-test (Gm)m∈N if x /∈
⋂

m∈N Gm

A sequence that passes all ML-tests is called Martin-Löf Random
(MLR)

Theorem

For any Π0
1 null class P, there is an ML-test (Gm)m∈N such that

P =
⋂

m∈N Gm; thus, no MLR sequence can be in a Π0
1 null class
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The Randomness of Empirical Data

Philosophers have previously claimed that empirical data is
algorithmically random for various reasons

Ex: McAllister suggests that empirical data is MLR, as empirical data
should not be wholly compressible to a scientific law

Regardless of this specific argument, the claim that at least some
empirical data is random seems intuitively plausible

Notions of algorithmic randomness, defining random infinite
sequences of Cantor space, fit well with Kelly’s approach to inquiry

We will therefore explore adding assumptions that the streams of data
are random to our model

As MLR is a particularly well-behaved notion of randomness, we shall
start by considering the assumption that data is MLR
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Combining Kelly and Algorithmic Randomness

Kelly notes that “The effect of randomness assumptions upon logical
reliability is an important issue for further study” (Kelly 1996, 63)

Advocates of the algorithmic randomness of empirical data argue that
it explains empirical data’s effectiveness as a source of information

Approaches to scientific inquiry that ignore randomness therefore risk
missing a crucial feature

A combination of these two programs thus seems initially promising
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Four Plausible Assumptions

Given a particular hypothesis H, we will consider four assumptions

Refutability: H is a refutable hypothesis, and therefore a Π0
1 class

Nullity: H is a null class
Randomness: Any data stream x ∈ 2ω that is observed must be MLR
Correctness: H correctly holds of the actual world

Each of these assumptions seems independently plausible

Furthermore, there is little reason to expect they could not be jointly
satisfied
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A Puzzle of Co-Impossibility

Theorem

Let H ⊆ 2ω be a refutable, null hypothesis, and let the actual data stream
x ∈ 2ω be MLR. Then the hypothesis H cannot be correct.

Proof.

By the refutability assumption, H is a Π0
1 set.

By the nullity assumption, µ(H) = 0.
Thus, H is Π0

1 null class.
By the randomness assumption, x ∈ MLR.
But, by the earlier stated theorem, x ∈ MLR implies x /∈ P for any Π0

1 null
class P.
Thus, x /∈ H, and so H cannot hold.
We conclude that the correctness assumption must be false.
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Given the background of Kelly’s representation of hypotheses in 2ω,
our four independently plausible assumptions become incompatible

The above result amounts to the claim that given
1 That a hypothesis is syntactically definable as a quantifier-free formula

preceded by a universal quantifier
2 That the hypothesis was initially determined to be highly unlikely
3 That the world presents algorithmically random data

one can conclude without empirical investigation that the hypothesis
is false

Such a claim seems to misrepresent the nature of hypothesis testing
and the capabilities of human investigators
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The Problem as it Stands

Both Kelly’s approach to modeling scientific inquiry and the claim
that data is random seemed quite fruitful

With the goal of generating a more comprehensive understanding of
hypothesis testing through empirical data, we set out to combine the
approaches

But a simple combination of the assumptions of the approaches leads
to an immediate seeming absurdity

Thus, one seems forced to alter some aspect(s) of one or both
approaches to allow a more satisfactory combination
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Two Possible Solutions

Two responses to the puzzle are initially plausible, and merit further
exploration:

1 Empirical data is algorithmically random (in some sense), but not this
sense is not MLR

2 The underlying probability framework should be altered with regards to
its treatment of null hypotheses

For the remainder of this talk, we will explore both responses
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Independent Concerns

The first potential solution is to accept that data is algorithmically
random, but formalize this claim with a non-MLR notion of
randomness

Twardy, Gardner, and Dowe (2005) independently provide support for
this claim

Recall: By Schnorr’s theorem, even the best description of any finite
initial sequence of length l of an MLR data stream cannot be shorter
than l − b for some fixed finite b

As l →∞, we thus find that the maximum compression of initial
sequences of data through scientific laws goes to 0

This characterizes scientific explanation as wholly ineffective.

So perhaps a notion of randomness with a less severe
incompressibility property would be preferable
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The Zoo of Randomness Notions

Furthermore, there is a wide variety of alternative notions of
algorithmic randomness1

1Image credit to Antoine Taveneaux
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Randomness and Π0
1 Null Classes

To solve the puzzle, this notion would have to permit random
sequences being contained in a Π0

1 null class

Additionally, this approach to the puzzle aims to find a formal
explication of randomness that is faithful to the pre-theoretic notion

A particularly low-strength notion of randomness, namely Weak
Randomness (WR), is characterized by avoiding Π0

1 classes

So any acceptable alternative to MLR must fail to imply WR
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A More Restricted Zoo of Randomness Notions

The need to avoid WR actually poses a strong constraint on the
notions of randomness that are acceptable
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Kolmogorov-Loveland Stochasticity

A notion of stochasticity is met if all the (in some sense) computable
subsequences of the set satisfy the law of large numbers

Different notions of stochasticity identify the relevant sense of
computability in different ways

Kolmogorov-Loveland Stochasticity (KLS) considers all subsequences
generated by a decidable, non-monotonic function on the data
sequence

Formally, a set X is KLS if no computable selection function has as
its range a subset of X with disproportionate numbers of 0’s and 1’s
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Benefits of KLS

Theorem (Wang 1996)

KLS 6→WR and WR 6→ KLS

KLS is thus formally capable of solving the puzzle

Additionally, KLS meets Twardy et al’s challenge regarding the
proper extent of incompressibility

As our solution would require a non-WR data sequence, there will be
no finite limit on the data’s maximum compression

If a set X is KLS, then for any c there will be infinitely many lengths n
such that the shortest description of X will be greater than c ∗ log(n)

Thus, we retain McAllister’s intuition that empirical data should never
be wholly compressible to a finite scientific law
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KLS and Fair Coin Tosses

Notions of stochasticity focus on capturing a particular intuitive
property of randomness

Namely, that fair coin tosses are random, and unfair coin tosses are
non-random

One of the original proposed notions of randomness, von Mises’s
Kollektivs definition, aimed to model just this property

Martin-Löf rejects the Kollektivs definition as being unmotivated

Even given the limited goal of just capturing the fair/unfair coin toss
distinction, Martin-Löf shows that Kollektivs cannot adequately succeed
In particular, Kollektivs characterizes as random a sequence that at
every point have a relative frequency of 1’s greater than 1

2
Yet “No one would be satisfied with such a sequence as an idealization
of actual coin tossing... we should certainly declare the coin to be
biased.” (Martin-Löf, 1969)
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J. Schatz (UCI) The Randomness of Empirical Data June 16, 2015 28 / 40



KLS and Fair Coin Tosses

Notions of stochasticity focus on capturing a particular intuitive
property of randomness

Namely, that fair coin tosses are random, and unfair coin tosses are
non-random

One of the original proposed notions of randomness, von Mises’s
Kollektivs definition, aimed to model just this property
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KLS was proposed to solve precisely this problem, grounding
randomness on a more adequate distinction between fair and unfair
coin tosses

But it was recently found that...

Theorem (Merkle 2003)

There is a KLS set X such that for all l ∈ N, X � l has a higher frequency
of 1’s than 0’s

We thus find that KLS is susceptible to the very problem that
motivated its creation

While KLS is proposed as a notion of randomness for its ability to
correctly distinguish fair and unfair coin tosses, it is unsuccessful in
this capacity
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Motivating KLS as a Notion of Randomness

KLS is defended as a notion of algorithmic randomness wholly on the
basis of its connection to the statistical concept of fair coin tosses

Resolving Martin-Löf’s critique of Kollektivs simply is the motivation
for developing KLS

Yet, Merkle’s result demonstrates that KLS is unsuccessful in
avoiding this critique

Thus, KLS is left without any significant motivation (as an
explication of the concept of randomness)

It is unclear that KLS functions as a notion of randomness at all

While it is technically capable of solving the puzzle, we conclude that
KLS is nonetheless not able to satisfactorily formalize the claim that
data is random
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A Potential Way Foward

We thus find to a significant extent that the well-studied notions of
algorithmic randomness are unsuited for combination with Kelly’s
approach

The vast majority of randomness notions imply WR, and therefore
entail our puzzle

The most salient alternatives, the stochasticity notions, can solve the
puzzle, but are philosophically unmotivated for the task

Any solution to the puzzle relying on alternative explications of
randomness will thus need to rely on less well-explored alternatives

One promising avenue of future study is notions of pseudorandomness
from complexity theory.
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A Second Possible Approach to the Puzzle

Alternatively, one could retain the claim that empirical data is random
in the sense of MLR

One would then seek to mitigate the unintuitive consequences of the
puzzle

We will focus on the nullity assumption

Two distinct ways forward might be to limit the ubiquity of null
hypotheses, or find compelling argument that these hypotheses can
be ignored in a model of hypothesis testing
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An Unsuccessful Solution: Regularity

An obvious way to restrict the extent of null hypotheses would be to
require a measure on be regular

A measure µ is regular if it only assigns value 0 to logical
contradictions

Recall that we identified hypotheses with subsets of 2ω, not sentences

Thus, there is only one logically impossible hypothesis (corresponding
to ∅)
But by Hájek’s result, there must be uncountably many null
hypotheses

Thus, regularity cannot be reasonably required of measures in the
current context
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An Unsuccessful Solution: Alernative Conditionalization

Recall that on standard Bayesian conditionalization, a measure 0
hypothesis cannot be conditionalized on

This prevents Bayesian conditionalization from providing guidance in
the event of a null hypothesis being observed

Such limitations can be seen as problematic, leading to proposed
alternative approaches to conditionalization

A particularly salient alternative is presented by Rényi, who takes
conditional probabilities as primitive

This enables conditionalization to be defined on null events in Rényi’s
conditional probability spaces

However, once data is fixed, as it must be in a model of hypothesis
testing, Rényi’s second axiom dictates that the alternative approach
collapses into the standard account
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A Potential Way Foward

Thus, neither method of reducing the extent or importance of
non-trivial null hypotheses is successful

The ubiquity of such hypotheses must therefore be accepted

Let C be a countable collection of Borel subsets of Cantor space.
Then say that a probability measure µ is C-regular if it satisfies the
following condition:

(X ∈ C & X 6= ∅) =⇒ µ(X ) > 0 (1)

Let C include some significant extent of the Π0
1 classes

Perhaps we could restrict attention to only measures that are
C-regular

Then the scope of the Π0
1 null hypotheses would be significantly

limited, effectively
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µ-ML Randomness

Letting µ be a C-regular probability measure, define a µ-ML-test to
be a uniformly c.e. decreasing sequence of effectively open classes Un

for n ∈ N such that µ(Un) < 2−n.

Define x to be µ-ML-random (MLRµ) if for any µ-ML-test (Un)n∈N,
x /∈

⋂
n∈N Un

The question arises of whether MLRµ provides a satisfying explication
of the intuitive notion of randomness

Theorem

Let µ be a computable measure on 2ω. Then there is a universal test
(Ûn)n∈N such that for all x, x ∈ MLRµ if and only if x /∈

⋂
n∈N Ûn

This provides strong preliminary support for the feasibility of MLRµ,
provided that a computable C-regular measure µ is itself plausible

It bears further exploration on whether computability and C-regularity
requirements, for some meaningful C, can be justified
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In Conclusion

We found a puzzling incompatibility between Kelly’s approach to
modeling inquiry and intuitive assumptions of the randomness of
empirical data

This incompatibility can be expressed as the co-impossibility of four
assumptions: refutability, nullity, randomness, and correctness

A technically and philosophically satisfying solution to the puzzle is
not readily forthcoming

Either potential route to a solution requires sustained mathematical
and philosophical exploration of less well-studied notions of
algorithmic randomness
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Ω

Thanks to everyone for listening, and special thanks to Sean Walsh
and Chris Porter for their extremely helpful guidance while pursuing
this project!
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