
Algorithmic statistics and useful information

Nikolay Vereshchagin1

1Moscow State University

VAI 2015

1 / 41



Algorithmic statistics

Question:

Assume that a bit string x (data) and a statistical hypothesis P
(a probability distribution over strings) are given; when do we
consider P a good “explanation” for x?
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Algorithmic statistics

Question:

Assume that a bit string x (data) and a statistical hypothesis P
(a probability distribution over strings) are given; when do we
consider P a good “explanation” for x?

A technical restriction: we will consider only uniform distributions over
finite sets as statistical hypotheses.

Repeating the Question:

Assume that a bit string x (data) and a set A containing x (a
model) are given; when do we consider A a good “explanation”
for x?
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A short answer

Example

1 A random string
x = 01111100011111010010000010001100001100100001011101
of length 100.

Good explanation: A = {0, 1}100 (the set of all 100-bit sequences)
Bad explanation: B = {x}.

2 y = 00000000000000000000000000000000000000000000000000

Good explanation: C = {y}.
Bad explanation: A = {0, 1}100.
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A short answer

Example

1 A random string
x = 01111100011111010010000010001100001100100001011101
of length 100.

Good explanation: A = {0, 1}100 (the set of all 100-bit sequences)
Bad explanation: B = {x}.

2 y = 00000000000000000000000000000000000000000000000000

Good explanation: C = {y}.
Bad explanation: A = {0, 1}100.

A model A ∋ x is a good “explanation” for x if

1 A is simple,

2 the string x is a random (typical) element of A.
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Kolmogorov complexity

C (x), C (x |y), C (A), C (x , y), C (A|x), C (x |A), C (x |y , z) etc.

C (011111000111110100100000100011000011) ≈ n.
C (000000000000000000000000000000000000) ≈ log2 n.

Definition

x is independent on y if C (x |y) ≈ C (x).

Notice that C (x |y) ≤ C (x) for all x , y .

C (x)− C (x |y) is called the information in y about x.

Theorem (Symmetry of information, Kolmogorov–Levin)

C (x) + C (y |x) = C (y) + C (x |y) = C (x , y).
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Simple sets

Definition

A set A ∋ x is simple explanation of x if C (A) is small compared to the
length of x .

Convention: We adopt logarithmic accuracy, that is, small means of order
O(log |x |) where x is a data string.
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Simple sets

Definition

A set A ∋ x is simple explanation of x if C (A) is small compared to the
length of x .

Convention: We adopt logarithmic accuracy, that is, small means of order
O(log |x |) where x is a data string.

Example

Both sets

{0, 1}n and {0000000000000000000000000000
︸ ︷︷ ︸

n times

}

are simple. They have the same complexity, which is at most
log2 n + O(1).
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Randomness deficiency

Definition

Notice that C (x |A) ≤ log2 |A| for all A ∋ x . A string x is a random
element of a set A ∋ x if

C (x |A) ≈ log2 |A|.

The quantity
log2 |A| − C (x |A)

is called the randomness deficiency of x in A.
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Randomness deficiency

Definition

Notice that C (x |A) ≤ log2 |A| for all A ∋ x . A string x is a random
element of a set A ∋ x if

C (x |A) ≈ log2 |A|.

The quantity
log2 |A| − C (x |A)

is called the randomness deficiency of x in A.

Example

1. Assume that C (x) ≈ |x | = n. Then x is a random element of {0, 1}n.
2. The string 0000000000000000000000 consisting of n zeros is not a
random element of the set {0, 1}n.
3. However the string 0000000000000000000000 is a random element of
the set {0000000000000000000000}.
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Stochastic strings

Definition (Kolmogorov’ 1983)

A string x is called stochastic there is a simple set A ∋ x such that x is a
random element of A.
Otherwise x is called non-stochastic.

Example

Assume that C (x) ≈ |x | = n. Then x is stochastic, witnessed by the set
A = {0, 1}n:

C (A) ≈ 0, C (x |A) ≈ n = log2 |A|.

Theorem (Shen’ 1983)

There are non-stochastic strings.
More specifically, for all n there is a string of length n whose randomness
deficiency is at least n/3 in every set of complexity less than n/3.
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Useful information: identifying noise
The Model Example. Let y be any string and z a random string
independent on y ,

C (z |y) ≈ C (z) ≈ |z |.

Let x = (y , z). Then z is the noise in x . Thus all useful information from
x is inside y .

Definition

A pair y , z identifies noise in x if

1 x is equivalent to the pair y , z

2 and z is a random string independent on y .

In this case we say that z is a noise in x .

Definition

A string x the same or more information than a string y , x → y , if
C (y |x) ≈ 0. Strings x and y are (informational) equivalent, x ↔ y , if
C (x |y) ≈ 0 and C (y |x) ≈ 0.
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Useful information: two part codes

Definition (a reminder)

A pair y , z identifies noise in x if

1 (y , z) ↔ x ,

2 and C (z |y) ≈ C (z) ≈ |z |.

Lemma

A pair y , z identifies noise in x iff

(y , z) → x and C (y) + |z | ≈ C (x).

The pair (y , z) is called a two part code for x, where y is the model and
z is the data-to-model code for x.

Proof.

C (x) ≤ C (y , z) = C (y) + C (z |y) ≤ C (y) + |z |.
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The “naive” approach fails

Lemma

The empty string captures useful information from any string x.

Proof.

The pair (the empty string, the shortest program for x) identifies noise in
x .

Question: What’s wrong with this “naive” approach?
Answer: The time to transform (y , z) to x may be huge. It may be not
bounded by any total computable function.
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Useful information: Koppel’s approach (1988)

Koppel considered two part codes of the form:
(a total computable function f , a string z with f (z) = x).

Definition (Koppel)

The sophistication of a string x is the minimal length of a total program p
such that for some string z

1 p(z) = x ,

2 |p|+ |z | ≈ C (x)

(in which case the pair p, z identifies noise in x).
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Useful information: Kolmogorov’s approach (1974,
unpublished)
Kolmogorov considered two part codes of the form:
(a finite set A, the index of x in A).

Definition (Kolmogorov)

A finite set A is called a sufficient statistic for x if

1 x ∈ A,

2 C (A) + log2 |A| ≈ C (x)

(in which case the pair (A, the index of x in A) identifies noise in x).

Lemma

A set A is a sufficient statistic for x iff x is a random element in A and
C (A|x) ≈ 0 (i.e. A has no redundant information).

Definition

A set A is called a minimal sufficient statistic for x if A is a sufficient
statistic for x of minimal complexity. 12 / 41



Koppel’s approach = Kolmogorov’s approach

Kolmogorov ⇒ Koppel:
A ∋ x ⇒ (p, z)
where z = (the index of x in A)
and p is a shortest program mapping i to ith element of A (and to the
empty string, say, if i > |A|).
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Koppel’s approach = Kolmogorov’s approach

Kolmogorov ⇒ Koppel:
A ∋ x ⇒ (p, z)
where z = (the index of x in A)
and p is a shortest program mapping i to ith element of A (and to the
empty string, say, if i > |A|).

Koppel ⇒ Kolmogorov:
p, z with p(z) = x ⇒ the set A = {p(z ′) | |z ′| = |z |}.

Example (trivial sufficient statistics)

Let x be any string.
The set A = {x} is a sufficient statistic for x .
Here C (A) ≈ C (x).
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Example (sufficient statistics for stochastic strings)

Assume that x is stochastic, witnessed by the set A.
Then A is a sufficient statistic for x . Indeed,

C (A) + log2 |A| ≈ log2 |A| ≈ C (x |A) ≈ C (x).

Example (The Model Example)

Let y be a non-stochastic string and z a random string independent on y .
Let x = (y , z).
Then the set

A = {(y , z ′) | |z ′| = |z |}

is a sufficient statistic for x .
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Sophistication, minimal sufficient statistics and useful
information

Definition

The amount of useful information in a data string x is its sophistication
(= the complexity of a minimal sufficient statistic for x).

Example

Stochastic strings (and only they) have no useful information.
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Minimal sufficient statistics

Lemma

If x has a sufficient statistic of complexity i < C (x) then it has a sufficient
statistic of every complexity in the interval [i ,C (x)].

The profile of x :

log−cardinality

Minimal sufficient statistics

Sufficient statistics

complexity

C(x)

|x|

C(x)

Pairs (C(A), log
2
|A|) with A ∋ x

i

C(x)− i
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log−cardinality

complexity

log−cardinality

complexity

Stohasti strings.

C(x) C(x)

Highly non-stohasti strings

Definition

A string x is highly non-stochastic if the complexity of any its sufficient
statistic is close to C (x). That is, all information in x is useful.
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Caution

We ignore terms of order log |x | (where x is the data string). As a result
the definition of a minimal sufficient statistics becomes quite vague.
Example:

omplexity

log-ardinality

C(x)

su�ieny line

border-line of the pro�le

Convention: We will consider only strings x for which the border-line of
the profile of x either does not leave the sufficiency line or leaves it at an
angle that is larger than 45 degrees.
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Good news

Theorem (V, Vitányi’ 2002)

Highly non-stochastic strings exist. Moreover, for any given profile
satisfying obvious constraints there is a string having that profile.

Theorem (V’ 2009)

Let x = (y , z) where y is highly non-stochastic and z is a random string
independent on y. Then the set

A = {(y , z ′) | |z ′| = |z |}

is a minimal sufficient statistic for x. In other words, the amount of useful
information in x is C (y) (and not less).
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Surprisingly good news

Assume that we a given a data string x and a “threshold” β. Consider the
following two tasks.

1 Task 1: Minimize C (A) under the constraints

x ∈ A, log2 |A| − C (x |A) ≤ β.

This is the task of finding a good statistical explanation of the given
data.
If the complexity of optimal solution is less than α then the string x is
called α, β-stochastic (Kolmogorov).

2 Task 2: Minimize C (A) under the constraints

x ∈ A, log2 |A|+ C (A) ≤ C (x) + β.

This is the task of denoising the data.
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All admissible solutions for the second task are admissible solutions for the
first task but not the other way around. (Example: {0, 1}n \ {y} as a
model for a random string x independent on y .)

Theorem (V, Vitányi’ 2002)

These tasks are equivalent: any optimal solution to the first task is an
optimal solution to the second task and the other way around.
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Bad news

Theorem (Gács, Tromp, Vitányi’ 1998, V, Vitányi’ 2002)

1 If A and B are minimal sufficient statistics for x then A ↔ B.
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Bad news

Theorem (Gács, Tromp, Vitányi’ 1998, V, Vitányi’ 2002)

1 If A and B are minimal sufficient statistics for x then A ↔ B.

2 Moreover, if A is a minimal sufficient statistic for x and its complexity
is i then

A ↔ Ωi

where Ωi denotes the number of strings of complexity at most i .

3 Moreover, there is a “universal” family of models
{Sik | i , k ∈ N, i ≤ k} such that

Sik ↔ Ωi , C (Sik) = i , log2 |Sik | = k − i

and for every string x there is a minimal sufficient statistic Sik for x
with k ≈ C (x).
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What is wrong with the approach of Koppel and
Kolmogorov?
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What is wrong with the approach of Koppel and
Kolmogorov?

1 It seems that our definition of “having the same information” is too
broad, we assumed that u and v are informational equivalent if both
C (u|v) and C (v |u) are negligible.
Under this assumption every string x has the same information as its
shortest program x∗.
In the context of separating the information into a useful one and an
accidental one, such an assumption is certainly misleading. Indeed,
for any string x we have x ↔ x∗. The string x∗ is always stochastic
while x may be highly non-stochastic.
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What is wrong with the approach of Koppel and
Kolmogorov?

1 It seems that our definition of “having the same information” is too
broad, we assumed that u and v are informational equivalent if both
C (u|v) and C (v |u) are negligible.
Under this assumption every string x has the same information as its
shortest program x∗.
In the context of separating the information into a useful one and an
accidental one, such an assumption is certainly misleading. Indeed,
for any string x we have x ↔ x∗. The string x∗ is always stochastic
while x may be highly non-stochastic.

2 However, even if we adopt a more restrictive definition of
informational equivalence, the universal models Sik discredit the
approach.
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Questions:

1 Is there a natural more restrictive definition of informational
equivalence?

2 Is it possible to restrict the class of sufficient statistics so that to ban
universal models Sik while keeping “natural” models like those from
the examples?
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Questions:

1 Is there a natural more restrictive definition of informational
equivalence?

2 Is it possible to restrict the class of sufficient statistics so that to ban
universal models Sik while keeping “natural” models like those from
the examples?

Answers:

1 Again we neglect computation time. We should think that x and y
are informational equivalent if there are short programs mapping x to
y and back in a “reasonable” time.

2 We will try.
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Total conditional complexity

Definition (Total conditional complexity)

CT (x |y)
= min{|p| : p(y) = x , p(y ′) halts for all y ′}.
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Definition (Total conditional complexity)

CT (x |y)
= min{|p| : p(y) = x , p(y ′) halts for all y ′}.

Lemma

For all n there is a string x of length n with

CT (x |x∗) = Ω(n)

for all short programs x∗ for x.
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Total conditional complexity

Definition (Total conditional complexity)

CT (x |y)
= min{|p| : p(y) = x , p(y ′) halts for all y ′}.

Lemma

For all n there is a string x of length n with

CT (x |x∗) = Ω(n)

for all short programs x∗ for x.

Theorem (Bauwens, Makhlin, V, Zimand’ 2013)

For all x there is a short program x∗ for x with

CT (x∗|x) = O(log n).
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A finer approach to the definition of “having the same
information”

Definition

Strings x and y are strongly (informational) equivalent, x ⇔ y , if
CT (x |y) ≈ 0 and CT (y |x) ≈ 0.

Lemma

If x ⇔ y then the profiles of x and y are close to each other.

Question: Is every minimal sufficient statistic strongly equivalent to some
Ωi?
Answer: Not any more!

Theorem (V’ 2015)

There is a string and its minimal sufficient statistic A that is not strongly
equivalent to Ωi (for any i).
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Restricting sufficient statistics: strong statistics

Definition

A is a strong statistic for x if CT (A|x) ≈ 0.
A is a good statistic for x if A is a strong sufficient statistic for x .
Useful information in the strong sense = minimal good statistic for x .

Remark. If A is sufficient statistic for x then C (A|x) ≈ 0. However it may
happen that CT (A|x) ≫ 0.
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Restricting sufficient statistics: strong statistics

Definition

A is a strong statistic for x if CT (A|x) ≈ 0.
A is a good statistic for x if A is a strong sufficient statistic for x .
Useful information in the strong sense = minimal good statistic for x .

Remark. If A is sufficient statistic for x then C (A|x) ≈ 0. However it may
happen that CT (A|x) ≫ 0.

Example

Let x = (y , z) where y is highly non-stochastic string and z is a random
strings independent on y . Then the set

{(y , z ′) | |z ′| = |z |}

is a minimal good statistic for x .
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Good statistics

Lemma

A is a good statistic for x iff x and the pair (A, the index of x in A) are
strongly equivalent and the index of x in A is a random string independent
on A.

Question: Are there indeed sufficient statistic that are not strong?
Answer: Yes!
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Strange strings

Theorem (on existence of strange strings, V’2012)

There is a string x whose profile and strong profile are far apart:

log−cardinality

complexity

log−cardinality

complexityC(x)C(x)

The pro�le of x The strong pro�le of x
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Banning universal models Sik

Question: Does restricting to good statistics ban any Sik?
Answer: Yes!

Theorem (Milovanov’ 2015)

There is a string x that has strong minimal sufficient statistic but no
model of the form Sik is such a statistic.
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Transforming one model into another one

Question: Assume that we have two sufficient statistics A and B for the
same string x and C (A) ≥ C (B). Is it true that C (B |A) ≈ 0?
Answer: No.

Example

Let
x = 011111000111110100100000100011000011

be a random string of length n. Let

A = {∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
︸ ︷︷ ︸

n/3

10100100000100011000011}

and

B = {011111000111110100 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
︸ ︷︷ ︸

n/2

}
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Uniqueness of minimal good statistic

Question: Assume now that A,B are sufficient statistics A and B for the
same string x and B is minimal. Is it true that C (B |A) is negligible?
In our example, any minimal sufficient statistic has a very small
complexity, as x is stochastic, thus the answer is positive by trivial reasons.
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Uniqueness of minimal good statistic

Question: Assume now that A,B are sufficient statistics A and B for the
same string x and B is minimal. Is it true that C (B |A) is negligible?
In our example, any minimal sufficient statistic has a very small
complexity, as x is stochastic, thus the answer is positive by trivial reasons.

Answer: Yes. Moreover, if B is a strong statistic for x then the total
complexity CT (B |A) is negligible.

Theorem (V’2009)

Assume that B is a minimal sufficient statistic for x and A is a sufficient
statistic for x. Then C (B |A) ≈ 0. If, additionally, B is a strong statistic
for x then CT (B |A) ≈ 0.
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Sufficient statistics for sufficient statistics

Lemma

Any minimal sufficient statistic for a non-stochastic object is highly
non-stochastic.

Proof.

Let A be a minimal sufficient statistic for x and B minimal sufficient
statistic for A. Assume that C (B) ≪ C (A).

Then we are able to construct a sufficient statistic A′ for x with
C (A′) ≪ C (A) applying to B the Lifting Procedure:
Let

A′ =
⋃

{X ∈ B | |X | ≈ |A|}

Then C (A′) ≈ C (B) and A′ is a sufficient statistic for x . Indeed, we have

log2 |A
′| ≤ log2 |B |+ log2 |A|.

Thus
C (A′) + log2 |A

′| ≤ C (B) + log2 |B |+ log2 |A| ≈ C (x). 33 / 41



Step-wise denoising

Scenario:
there is a data string x such that there is a strong minimal sufficient
statistic for x . Our goal is to denoise it, that is, to find such a statistic.

Assume that somebody performed a partial denoising of x obtaining a
good model A for x and then another guy fully denoised A and gave us a
minimal sufficient statistic D for A:

1 x
Partial denoising

=⇒ a good statistic A for x

2 A
Full denoising

=⇒ a minimal sufficient statistic D for A

Can we recover a minimal sufficient statistic for x from D? A natural idea
is to apply the lifting to D. The complexity of resulting sufficient statistic
B for x is C (D) and B is a good statistic for x provided D is good.

Question: Is D a minimal sufficient statistic for x?
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statistic for x . Our goal is to denoise it, that is, to find such a statistic.

Assume that somebody performed a partial denoising of x obtaining a
good model A for x and then another guy fully denoised A and gave us a
minimal sufficient statistic D for A:

1 x
Partial denoising

=⇒ a good statistic A for x

2 A
Full denoising

=⇒ a minimal sufficient statistic D for A

Can we recover a minimal sufficient statistic for x from D? A natural idea
is to apply the lifting to D. The complexity of resulting sufficient statistic
B for x is C (D) and B is a good statistic for x provided D is good.

Question: Is D a minimal sufficient statistic for x?
Answer: Yes.
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Theorem (V’2009)

If A is a good statistic for x then the complexities of minimal sufficient
statistics for x and A are close. Moreover, the profiles of x and A look, as
shown on the following figure:

log−cardinality

complexity

log−cardinality

complexityC(x)C(A)
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Normal strings

Definition

A string x is called normal if its strong profile is close to its profile.

Question: Are normal non-stochastic strings rare?
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Theorem (on existence of normal strings, Milovanov’ 2015)

For any given string x there is a normal string having the same profile
(with O(

√

|x |) accuracy).
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Definition

A string x is called normal if its strong profile is close to its profile.

Question: Are normal non-stochastic strings rare?
Answer: No!

Theorem (on existence of normal strings, Milovanov’ 2015)

For any given string x there is a normal string having the same profile
(with O(

√

|x |) accuracy).

Question: Assume that we denoised a normal string x and obtained a
minimal good statistic A for x . Is A always normal?
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Normal strings

Definition

A string x is called normal if its strong profile is close to its profile.

Question: Are normal non-stochastic strings rare?
Answer: No!

Theorem (on existence of normal strings, Milovanov’ 2015)

For any given string x there is a normal string having the same profile
(with O(

√

|x |) accuracy).

Question: Assume that we denoised a normal string x and obtained a
minimal good statistic A for x . Is A always normal?
Answer: Yes!

Theorem (Normality is hereditary, Milovanov’ 2015)

Assume that x is a normal string and A is a minimal good statistic for x.
Then A is normal as well (with O(

√

|x |) accuracy).
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Some applications.
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Denoising a real data (de Rooij, Vitányi’ 2012)

Noisy mouse (64× 40 pixels):

Denoised mouse:
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List decoding from erasures (Milovanov’ 2015)

Definition

A string of length n and complexity k is called anti-stochastic if it has the
smallest possible profile for strings of that length and complexity:

log−cardinality

complexityC(x) = k

n
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Theorem (Holographic property of anti-stochastic strings)

Every anti-stochastic string x of length n and complexity k can be restored
from any string x̃ obtained from x by erasing any n − k its bits (erased
symbols are replaced by ∗) by a program of length O(log n). That is,
C (x |x̃) = O(log n).
Such strings are called n, k-holographic.

Corollary

There are about 2k n, k-holographic strings. They thus form a code of
rate k/n that is capable to correct n − k erasures by list decoding with list
size poly(n).
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Thank you.
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