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Goals

1. Continue the analysis of algorithmic randomness for closed
sets and continuous functions on 2ω and their connection with
Choquet capacity.

2. Study online random functions and partial random functions.



History

Barmpalias, Brodhead, Cenzer et al (JLC 2007, AML 2008, JLC
2009) have developed the notion of algorithmic randomness for
closed sets and continuous functions on 2ω as part of the broad
program of algorithmic randomness.

The study of random closed sets was furthered by Axon (2010
Notre Dame Ph.D. thesis), Diamondstone and Kjos-Hanssen
(APAL 2012), and others. Cenzer et al (LMCS 2011) studied the
relationship between notions of random closed sets with respect to
different computable probability measures and effective capacities.

Algorithmic randomness for reals has been extensively studied in
recent years. See Downey-Hirschfeldt (2011) and Nies (2009) for
more.
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Algorithmically Random Reals

Algorithmic randomness is concerned with the randomness of a
single real x = (x(0), x(1), . . . ) ∈ 2ω (or in Σω where Σ is finite).

There are characterizations in terms of Kolmogorov Complexity, in
terms of martingales or betting stategies, and in terms of statistical
tests.



Notions of Randomness for Computable Measures

Space X = ΣN for some finite Σ ( {0, 1})
Computable measure µ on X , Lebesgue measure λ or biased
(Bernoulli) coin toss λp – probability p of a 1 and probability 1− p
of a 0.

More general continuous measures will also be considered.

A µ-Martin-Löf test is an effective sequence (Un)n∈ω of c.e. open
sets with µ(Un) < 2−n for all n.

Thus the intersection
⋂

n Un is an effectively defined set having
measure zero.

x passes such a test if x /∈ ⋂n Un.

x is µ-Martin-Löf random if it passes every µ-Martin-Löf test.



Trees and Closed Sets

A subset T of Σ∗ is a tree if τ ∈ T and σ @ τ implies σ ∈ T .

[T ] = {x ∈ ΣN : (∀n)x�n ∈ T}.

The intervals [σ] for σ ∈ Σ∗ form a basis for the topology.

Fact: A subset Q of ΣN is closed IFF Q = [T ] for some tree T

Q is effectively closed IFF Q = [T ] for some computable T .

The complement of an effectively closed set is c.e. open.

For a closed set Q, let TQ = {σ : Q ∩ [σ] 6= ∅; TQ is a tree.

Q = [TQ ] for any closed set Q.



Random Closed Sets

Given a closed set Q = [T ] where T has no dead ends, let
σ0, σ1, . . . enumerate the elements of T in length-lex order.

The code x = xQ for Q is defined by recursion such that for each n,

(i) x(n) = 2 if both σn
_0 and σn

_1 are in T ,

(ii) x(n) = 1 if σn
_0 /∈ T and σn

_1 ∈ T , and

(iii) x(n) = 0 if σn
_0 ∈ T and σn

_1 /∈ T .

We then define a measure µ∗ on C by setting

µ∗(X ) = µ({xQ : Q ∈ X})

for any X ⊆ C where µ is any measure on {0, 1, 2}N.



Previous Results for Random Closed Sets

I ∆0
2 random closed sets exist.

I There are no random Π0
1 closed sets.

I Any random closed set is perfect.

I Any random closed set has measure 0.

I Any random closed set has dimension log2
4
3 .

I Random closed sets contain no n-c.e. elements.



Continuous Functions

A continuous function F : 2ω → 2ω may be represented by a
function f : {0, 1}∗ → {0, 1}∗ such that the following hold for all
σ ∈ {0, 1}∗.

(1) |f (σ)| ≤ |σ|;

(2) σ1 @ σ2 implies f (σ1) v f (σ2);

(3) For every n, there exists m such that for all σ ∈ {0, 1}m,
|f (σ)| ≥ n;

(4) For all x ∈ 2ω, F (x) =
⋃

n f (xdn).



Coding with delay

Enumerate {0, 1}∗ in length-lex order as
σ0 = ∅, σ1 = (0), σ2 = (1), σ3 = (00), . . ..

Let r ∈ 3ω correspond to the function fr : {0, 1}∗ → {0, 1}∗
defined by declaring that fr (∅) = ∅ and that, for any n > 0,

fr (σn) =

{
fr (σk), if r(n) = 2

fr (σk)_i , if r(n) = i < 2

where k is such that σn = σk
_j for some j .

Then every continuous function F has a representative f as
described above, and, in fact, it has infinitely many
representations.

For the uniform 1/3 measure µ, almost every r ∈ 3ω codes a total,
continuous function.
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000 7! 0
001 7! 0
010 7! 00
011 7! 001

100 7! 110
101 7! 111
110 7! 110
111 7! 110



Random Functions

A continuous function F : 2ω → 2ω is µ∗∗-random if there is a
code for F which is µ-random.

Some results from previous work:

I There are random ∆0
2 continuous functions, but no

computable function can be random and no random function
can map a computable real to a computable real.

I The image of a random function is a perfect set

I For any y ∈ 2ω, there exists a random continuous function F
with y in the image of F ; thus the image of a random
continuous function need not be a random closed set.

I The set of zeroes of a random continuous function is a
random closed set (if nonempty).



Symmetric Bernoulli Measures

A measure µ on 3ω is a Bernoulli measure if there are
p0, p1, p2 ∈ [0, 1] such that p0 + p1 + p2 = 1 and
µ(σ_i) = pi · µ(σ) for each i ∈ {0, 1, 2}
if p0 = p1 = r , then µ = µr is a symmetric Bernoulli measure

µr is computable if and only if r is a computable real number.

Proposition (Cenzer, Porter)

Let µr be a symmetric Bernoulli measure on 3ω for some
r ∈ [0, 1/2]. Then the µ∗∗r -measure of the collection of non-total
continuous functions on 2ω is 0 if r ≥ 1/4 and is

1− 4r

(1− 2r)2
, if r < 1/4.

When r = 1/3, this means that almost all functions are total.



Being in the Range

Theorem (Cenzer, Porter)

Let µr be a symmetric Bernoulli measure on 3ω for some
r ∈ (0, 1/2] and let y ∈ 2ω. Then the µ∗∗r -measure of the collection
of continuous functions F such that y ∈ ran(F ) is equal to

1− 2r

1− 2r + r 2
.

When r = 1/3, this gives measure 3/4.



Random Online Functions

For the symmetric Bernoulli measure µ1/2, random functions are
represented by random sequences in 2ω

Without delay, not every continuous function can be represented,
for example, F (x)(n) = x(2n).

Every random online function is total.

For any real y , the probability that y ∈ ran(F ) is zero.



Results for Online Random Functions I

Theorem (Cenzer, Porter)

No computable real is in the range of an online random function.

Sketch: The probability pn that ran(F ) hits x�n is given by
pn+1 = pn − 1

4 p2
n, which converges to zero.

Corollary

No online random function is onto.



Results for Online Random Functions II

Theorem (Cenzer, Porter)

Let F be an online random function and let x ∈ 2ω code the
representing function of F . If y is Martin-Löf random relative to x,
then F−1({F (y)}) is a standard random closed set.

Sketch: The map Θ taking x ⊕ y to a representation of the closed
set F−1({F (y)}) induces the uniform measure and preserves
randomness.

Corollary

No online random function is one-to-one.



Results for Online Random Functions III

Theorem (Cenzer, Porter)

The range ran(F ) of an online random function F is not a
standard random closed set.

The proof uses martingales



Capacity

Definition
A capacity on C(2ω) is a function T : C(2ω)→ [0, 1] with
T (∅) = 0 such that

1. Q1 ⊆ Q2 implies T (Q1) ≤ T (Q2).

2. For n ≥ 2 and any Q1, . . . ,Qn ∈ C

T (
n⋂

i=1

Qi ) ≤
∑
{(−1)|I |+1T (

⋃
i∈I

Qi ) : ∅ 6= I ⊆ {1, 2, . . . , n}}.

3. If Q =
⋂

n Qn and Qn+1 ⊆ Qn for all n, then
T (Q) = limn→∞ T (Qn).

T is computable if it is computable on the family of clopen sets.



Choquet Capacity Theorem

Given a measure µ∗ on the space C(2ω) of closed sets, define

Tµ(Q) = µ∗({X ∈ C(2ω) : X ∩ S 6= ∅}).

Tµ(Q) is the probability that a random closed set meets Q.

For µ1/3, T ([σ]) = (2/3)|σ|.

Theorem (Effective Choquet Capacity Theorem, LMCS2011)

1. For any computable probability measure µ on C(2ω), Tµ is a
computable capacity.

2. For any computable capacity T on C(2ω), there is a
computable measure µ on the space of closed sets such that
T = Tµ.



Previous Capacity Results

Let Tr = Tµr .

Theorem (LCMS 2011)

1. If r ≥ 1−
√

2/2, then Tr (Q) = 0 for every µr -random Q.

2. If r < 1−
√

2/2, then Tr (Q) > 0 for every µr -random Q.

Theorem (LCMS 2011)

1. For any Π0
1 class Q, Tr (Q) is upper semi-computable.

2. For any upper semi-computable real q, there is Π0
1 class Q

with capacity q.

Theorem (LCMS 2011)

For any r , there is an effectively closed set Q with positive
capacity and with Lebesgue measure 0.



From Functions to Capacities I

Theorem (Cenzer, Porter)

Let ν∗∗ be a computable measure on F(2ω) such that every
ν∗∗-random function is total. Then the function

T (Q) = ν∗∗({F ∈ F(2ω) : ran(F ) ∩ Q 6= ∅})

is a computable capacity on C(2ω).

Sketch: The map Φ taking F to ran(F ) is a Turing functional
defined on a set of ν-measure one.

Then νΦ = ν(Φ−1(X )) defines a computable measure and

T (Q) = ν∗∗({F ∈ F(2ω) : ran(F ) ∩ Q 6= ∅})
= ν∗Φ({C ∈ C(2ω) : C ∩ Q 6= ∅}).



From Functions to Capacities II

Proposition (Cenzer, Porter)

For ν = µr , the νΦ-random closed sets are not the standard
random closed sets.

Sketch: 0∞ ∈ ran(F ) with positive probability under νΦ but cannot
belong to a standard random closed set



Capacity and Complexity

Theorem (Cenzer, Porter)

Let µ∗ be a computable measure on C(2ω) and Tµ the computable
capacity associated to µ. If x is a member of some µ∗-random
closed set, then there is some c such that for all n

K (x�n) ≥ − log Tµ([X �n])− c .

Sketch: Suppose that for every c, there exists n such that
K (x�n) < − log Tµ([X �n])− c .

Then Ui = {Q ∈ C(2ω) : (∃σ ∈ Ŝi )[Q ∩ JσK 6= ∅]}
will be a µ∗-Martin-Löf test which Q fails if x ∈ Q.



The Range of an Online Random Function

Let T be the capacity defined above using the ranges of online
random functions

Recall the computable sequence pn with limit zero such that
T ([σ]) = pn where |σ| = n.

Note that f (n) = pn is an order function.

Then we have:

Corollary

If x is in the range of a random online function, then for some c,
K (x�n) ≥ −log pn − c for all n. Thus x is complex.



Online Random Partial Functions

We introduce this notion in order to find a capacity which matches
the capacity associated to the standard random closed sets.

Now f (σ) = 2 represents permanent divergence of the function
along σ, rather than delay.

Theorem (Cenzer, Porter)

If µr is a computable symmetric Bernoulli measure on 3ω, then the
probability that a µ∗∗r -random online partial function has
non-empty domain is 0 if r ≥ 1/4 and is

4r − 1

4r 2
, if r < 1/4.



Generalized Symmetric Bernoulli Measures

Given a computable sequence of rationals ~r = (ri )i∈ω with ri ≤ 1/2
for every i , define a measure µ~r on 3ω such that for each n and
each σ of length n,

I µ~r (σ0 | σ) = µ(σ1 | σ) = rn · µ(σ) and

I µ~r (σ2 | σ) = (1− 2rn)µ(σ).



The Main Theorem

Theorem (Cenzer, Porter)

Let T be an computable capacity on C(2ω) and a computable
sequence of rationals (pi )i∈ω such that

(i) for each n, T ([σ]) = pn for every σ ∈ 2n, and

(ii) limn→∞ pn = 0.

Then there is a computable, generalized symmetric Bernoulli
measure µ~r on 3ω such that the ranges of the µ∗∗~r -random online
partial functions are precisely the random closed sets associated
with the capacity T . Moreover, in the case that limn→∞

pn+1

pn
= p

for some p ∈ [0, 1], we have limn→∞ rn = p
2 .



Standard Random Closed Sets

Starting with the standard capacity where pn = ( 2
3 )n, we obtain

Theorem (Cenzer, Porter)

Let ~r = (ri )i∈ω be defined by

ri =
2/3

1 +

√
1−

(
2
3

)i .
Then the family of ranges of the µ∗∗~r -random online partial
functions is equal to the family of the standard random closed sets.

Sketch: The proof of the previous result gives us

rn+1 =
pn+1

pn(1 +
√

1− pn+1)
.



Future Topics

I Random online functions with finite delay

I Average values (integrals) of random functions
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