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RANDOM GRAPHS

Fix .  is a simple, undirected graph with 
vertices where each edge is present (indepedently) with
probability .

A natural "limit object" for  is , a countable 
-random graph.

This is known as the Erdös-Renyi model.
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CONUNDRUMS OF RANDOM GRAPHS

For any , two graphs  and 
are almost surely equivalent.

There exists a computable graph  on  such that for
every , almost surely  is isomorphic to .      [Rado]
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CONSEQUENCES
What does this imply for algorithmic randomness?

We can fix a probability distribution and develop
randomness for labeled graphs and try to keep it "as
invariant as possible".

Since there is a recursive copy, no approach with even
modest computational power will include all copies of
the random graph.

Will the randomness be "in the isomorphism"?
     [Fouché]



CONSEQUENCES

We can accept the fact that a random graph is so highly
symmetric (the automorphism group is extremely rich) that
we have a recursive copy.

The situation then seems similar to normal numbers.

They satisfy many randomness properties (particularly
from a dynamical point of view).

This suggests to look at random graphs from a
stochasticity point of view (but what is a normal graph?).



CONSEQUENCES
As we will see, both aspects are closely related.

Does algorithmic randomness (in the
"classical" sense) have anything significant to

add to the picture?



RANDOM GRAPHS AS HOMOGENEOUS STRUCTURES

The reason for the rich symmetry of the random graph can
be seen in its homogeneity.

A countable (relational) structure  is homogeneous if
every isomorphism between finite substructures of 
extends to an automorphism of .

The Rado graph  is homogeneous by virtue of the I-
property:








For any  there exists 

for all , .

,… , , ,… ,x1 xn y1 ym z
z ∼ , z ≁xi yj

1 ≤ i ≤ n 1 ≤ j ≤ m



HOMOGENEOUS STRUCTURES

Fraissé: Any homogeneous structure arises as a
amalgamation process of finite structures over the same
language (Fraissé limits).

Examples:

,
the Rado (random) graph
the universal -free graphs,  (Henson)

Homogeneous structures (over finite languages) are -
categorical, i.e. their theory has only one model up to
isomorphism.
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RANDOMNIZED CONSTRUCTIONS

Many homogeneous structures can obtained (almost
surely) by adding new points according to a randomized
process.

: add the -th point between (or at the ends) of
any existing point with uniform probability .

Rado graph: add the -th vertex and connect to every
previous vertex with probability  (uniformly and
independently).

Vershik: Urysohn space, Droste and Kuske: universal
poset

Henson graph: ???

(ℚ, <) n
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CONSTRUCTIONS "FROM BELOW"

A naive approach to "randomize" the construction of the
Henson graph would be as follows:

In the -th step of the construction, pick a one-vertex
extension uniformly among all possible extensions that
preserve -freeness.

However: Erdös, Kleitman, and Rothschild showed that (as
 goes to ) almost all graphs missing a  are bipartite.

The Henson graph(s), in contrast, has to contain every
finite -free graph as an induced subgraph, in
particular,  and hence cannot be bipartite.
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CONSTRUCTIONS "FROM ABOVE"

Petrov and Vershik (2010) showed how to construct
universal -free graphs probabilistically by sampling them
from a continuous graph.

These continuous graphs, known as graphons, have been
studied extensively over the past decade.

See, for example the recent book by Lovasz, Large
networks and graph limits (2012).

Kn



GRAPHONS

One basic motivation behind graphons is to capture the
asymtotic behavior of growing sequences of dense graphs,
e.g. with respect to subgraph densities.

While the Rado graph can be seen as the limit object of a
sequence  of finite random graphs, it does not
distinguish between the distributions with which the edges
are produced.

For any ,  "converges" almost surely to
(an isomorphic copy of) the Rado graph.

However, ,  will exhibit very different
subgraph densities than 

( )Gn
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CONVERGENCE

Let  be a graph sequence with .

We say  converges if

( )Gn |V( )| → ∞Gn

( )Gn

for every finite graph , the relative number 
 of embeddings of  into 

converges.

F
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QUASIRANDOM GRAPHS

A sequence of graphs ,  is quasirandom if for
every graph  on  vertices,

That means every fixed finite graph occurs with the "right"
frequency.

Hence quasirandom sequences converge in the above
sense.
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QUASIRANDOM GRAPHS

Quasirandom graph sequences form a natural analog to
normal sequences.

However, the additonal structure of graphs makes them
more robust. Chung, Graham and Wilson (1989) showed
that it suffices to satisfy the asymptotic frequency
condition for  (one edge) and  (squares) only.

One can take quasirandom graphs as a basis for "classical"
stochasticity for graphs.

How robust are they under various kinds of selection rules?

This is an ongoing project of Penn State graduate
student Jake Pardo.
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GRAPHONS

 measurable, and for all , 

 and .

Think:  is the probability there is an edge between 
and .

Subgraph densities:

edges: 

triangles: 

this can be generalized to define .

W : [0, 1 → [0, 1]]2 x, y

W(x, x) = 0 W(x, y) = W(y, x)

W(x, y) x
y

∫ W(x, y) dx dy
∫ W(x, y)W(y, z)W(z, x) dx dy dz

(F, W)ti



GRAPHONS AND GRAPH LIMITS
Basic idea: "pixel pictures"

from Lovasz (2012), Large networks and graph limits



GRAPHONS AND GRAPH LIMITS
Convergence of pixel pictures

from Lovasz (2012), Large networks and graph limits



GRAPHONS AND GRAPH LIMITS
Convergence of pixel pictures

from Lovasz (2012), Large networks and graph limits



THE LIMIT GRAPHON
THM: For every convergent graph sequence  there

exists (up to weak isomorphim) exactly one graphon  such
that for all finite :
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W
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THE LIMIT GRAPHON
Example: Uniform attachment graphs

from Lovasz (2012), Large networks and graph limits



from Lovasz (2012), Large networks and graph limits

A COMPATIBLE METRIC
Edit distance: .
 
Cut distance: , where  is the
cut norm

 can be extended to graphs of different order...
 
... and to graphons:

(F, G) =∥ −d1 AF AG∥1

(F, G) =∥ −d◻ AF AG∥◻ ∥. ∥◻

∥A = .∥◻
1
n2 max

S,T⊆[n]
∣∣ ∑
i∈S,j∈T

Aij∣∣

d◻

∥W = W(x, y) dx dy.∥◻ sup
S,T⊆[0,1] ∫S×T



   

A COMPATIBLE METRIC

A sequence  converges iff it is a Cauchy sequence with
respect to .
 

     iff     

( )Gn
d◻

→ WGn ( , W) → 0d◻ Gn



SAMPLING FROM GRAPHONS

We can obtain a finite graph  from  by
(independently) sampling  points  from  and
filling edges according to probabilities .

almost surely, we get a sequence with .

If we sample -many points from , we
almost surely get the random graph.

�(n, W) W
n , … ,x1 xn W

W( , )xi xj

�(n, W) → W

ω W(x, y) ≡ 1/2



THE PETROV-VERSHIK GRAPHON

Petrov and Vershik (2010) constructed, for each , a
graphon  such that we almost surely sample a Henson
graph for .

The graphons are (necessarily) {0,1}-valued.

Such graphons are called random-free.

The constructions resembles a finite extension
construction with simple geometric forms, where each
step satisfies a new type requiring attention.

The method can also be used to construct random-free
graphons from which we sample the Rado graph.

n ≥ 3
W
n



INVARIANT MEASURES

The Petrov-Vershik graphon also yields a measure on the
set of countable infinite graphs concentrating on the set of
universal, homogeneous -free graphs.

This measure will be invariant under the "logic action", the
natural action of  on the space of countable (relational)
structures with universe .

This method was generalized by Ackerman, Freer, and Patel
(2014) to other homogeneous structures.

It can be used to define algorithmic randomness for such
structures (as suggested by Nies and Fouché).

Kn
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UNIVERSAL GRAPHONS
A random-free graphon is countably universal if for every
set of distinct points from , , ,
the intersection

has non-empty interior. 
Here  is the neighborhood of .

For countably -free universal graphs, we require this to
hold only for such tuples where the induced subgraph by
the  has no induced -subgraph,

additionally, require that there are no n-tuples in X
which induce a .

[0, 1] , , … ,x1 x2 xn , … ,y1 ym

∩⋂
i,j

Exi EC
yj

= {y: W(x, y) = 1}Ex x
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THE TOPOLOGY OF GRAPHONS

Neighborhood distance: 

and mod out by .

Example:  is a singleton space.

THM: (Freer & R.) (informal) If  is a random-free universal
graphon obtained via a "tame" extension method, then  is not
compact in the  topology.

(x, y) = ∥ W(x, . ) − W(y, . ) = ∫ |W(x, z) − W(y, z)|rW ∥1

(x, y) = 0rW

W(x, y) ≡ p

W
W

rW



"TAME" EXTENSIONS
DEF: A random-free graphon  has continuous realization
of extensions if there exists a function

that is continuous a.e. such that for all ,

Here  is the neighborhood of . 
 
The Petrov-Vershik graphons have uniformly continuous
realization of extensions.

W

f : ( , … , ), ( , … , ) ↦ (l, r)x1 xn y1 ym
,x ⃗ y ⃗ 

[l, r] ⊆ ∩ .⋂
i,j

Exi EC
yj

= {y: W(x, y) = 1}Ex x



NON-COMPACTNESS
  

THM: If a countably ( -free) universal
graphon has uniformly continuous realization

of extensions, then it is not compact in the 
-topology.

Kn

rW



FEATURES OF THE PROOF

Building a "Cantor sequence" in .

Apply the Szemeredi regularity lemma to pass to a
sequence of stepfunctions that approximate the graphon
uniformly.

Use universality to find the next splitting.

Uniform continuity guarantees that the Szemeredi
"squares" are filled with the right measure.

W



REGULARITY LEMMA

For every  there is an  such that every
graph  with at least  vertices has an equitable
partition of V into  pieces (1/ε ≤ k ≤ S(ε)) such that for all
but  pairs of indices , the bipartite graph  is 

-regular.

For every graphon  and  there is stepfunction 
with  steps such that

ϵ > 0 S(ϵ) ∈ ℕ
G S(ϵ)

k
ϵk2 i, j G[ , ]Vi Vj

ϵ
W k ≥ 1 U

k

(W, U) < ∥ Wd◻
2

log k‾ ‾‾‾‾√
∥2



COMPLEXITY OF UNIVERSAL GRAPHONS
construction: fully

random
tame
deterministic

general
deterministic

complexity of
graphon

low
(singleton)

high 
(non-
compact,
infinite
Minkowski
dimension)

           ?

Also: Is there a robust notion of a stochastic
graphon?


