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Preliminaries CT for degrees? Measurement theory Computability vs complexity

Simpson (2015) CiE tutorial (his italics)
Given an algorithmically unsolvable problem X, one associates to X a
degree of unsolvability , i.e., a quantity which measures the
amount of algorithmic unsolvability which is inherent in X . . .¶ . . .
The existence of unsolvable mathematical problems was discovered by
Turing (1936). Indeed, Turing exhibited a specific, natural
example of such a problem . . .¶ . . .
A scheme for classifying unsolvable problems was developed by Post
(1944) and Kleene and Post (1954). Two reals X and Y are said to be
Turing equivalent if each is computable using the other as a Turing
oracle. The Turing degree of a real is its equivalence class under
this equivalence relation. Each of the specific, natural, unsolvable
problems mentioned in the previous paragraph˚ is a decision problem
and may therefore be straightforwardly described or “encoded” as a
real.

˚ The Halting Problem, Hilbert’s Tenth Problem, Homemophisms of finite
simplicial complexes, the Word Problem, the Entscheidungsproblem.
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Simpson (2015) CiE tutorial (my italics)
Given an algorithmically unsolvable problem X, one associates to X a
degree of unsolvability, i.e., a quantity which measures the
amount of algorithmic unsolvability [«? difficulty ] which is
inherent in X . . .¶ . . .
The existence of unsolvable mathematical problems was discovered by
Turing (1936). Indeed, Turing exhibited a specific, natural example of
such a problem . . .¶ . . .
A scheme for classifying unsolvable problems was developed by Post
(1944) and Kleene and Post (1954). Two reals X and Y are said to be
Turing equivalent if each is computable using the other as a Turing
oracle. The Turing degree of a real is its equivalence class under this
equivalence relation. Each of the specific, natural, unsolvable
problems mentioned in the previous paragraph˚ is a decision problem
and may therefore be straightforwardly described or “encoded” as a
real.

˚ The Halting Problem, Hilbert’s Tenth Problem, Homemophisms of finite
simplicial complexes, the Word Problem, the Entscheidungsproblem.

3/40



Preliminaries CT for degrees? Measurement theory Computability vs complexity

Post (1944)

Related to the question of solvability or unsolvability of problems is
that of the reducibility or non-reducibility of one problem to
another. Thus, if problem X has been reduced to problem Y , a
solution of X immediately yields a solution of Y , while if X is proved
to be unsolvable, Y must also be unsolvable. For unsolvable problems
the concept of reducibility leads to the concept of degree of
unsolvability, two unsolvable problems being of the same degree of
unsolvability if each is reducible to the other, one of lower degree of
unsolvability than another if it is reducible to the other, but that
other is not reducible to it, of incomparable degrees of unsolvability if
neither is reducible to the other.

“Recursively enumerable sets of positive intergers”, p. 289
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Shoenfield (1971)
We can think of X ďT Y as meaning that X is at least as easy to
compute as Y . Then X ”T Y means that X and Y are equally easy
to compute. Thus the degree of X is a measure of the difficulty of
computing X; the higher this degree (in the partially ordered set of
degrees), the more difficult Y is to compute.

Degrees of Unsolvability, pp. 26-27

Should such terminology be taken seriously? Why care?
§ Philosophers of mathematics tend to draw conclusions from
degree-theoretic results unreflectively.

§ Terms like “measure”, “degree”, “inherent” suggest an analogy
between comparing the difficulty of computational problems
and empirical measurement of mass, temperature, etc.

§ Complexity theorists speak of classifying decidable problems
according to their “degree of inherent computational difficulty”.
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Focal questions

Q1) Is there a “Church’s Thesis” for notions like reduction,
easier/harder than, and degree/amount of difficulty?

Q2) Does the machinery of measurement theory – à la Krantz,
Luce, Suppes & Tversky (1971) – help to clarify this question?

Q3) Do we get the same answers for 1) and 2) in both
computability theory and complexity theory?

§ Computability theory is concerned with degrees of
non-solvability over 2N.

§ Complexity theory is concerned with degrees of feasibility
inside of REC (or even EXP).
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Focal answers (tentative)

Q1) Is there a “Church’s Thesis” for notions like reduction,
easier/harder than, and degree/amount of difficulty?

A1) At best a partial one.

Q2) Does the machinery of measurement theory help to clarify this
question?

A2) Somewhat.

Q3) Do we get the same answers for 1) and 2) in both
computability theory and complexity theory?

A3) Complicated. (In complexity theory, the pretheoretical comparisons
of difficulty seem to have a stronger basis in practice. But we are
plagued by open separation question for complexity classes.)
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Gödel (1946) – my italtics

Tarski has stressed in his lecture . . . the great importance of the
concept of . . . Turing’s computability. It seems to me that this
importance is largely due to the fact that with this concept one has
for the first time succeeded in giving an absolute definition of an
interesting epistemological notion, i.e., one not depending on
the formalism chosen. In all other cases treated previously, such as
demonstrability or definability, one has been able to define them only
relative to a given language, and for each individual language it is
clear that the one thus obtained is not the one looked for. For the
concept of computability, however . . . the situation is different. By a
kind of miracle it is not necessary to distinguish orders, and the
diagonal procedure does not lead outside the defined notion.

Remarks before the Princeton bicentennial conf. on problems in maths., p. 150

Question: Do we expect a similar “miracle” for reduction,
easier/harder, degree of difficulty?
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Arguing for Church’s Thesis

§ Chuch’s Thesis is a “pre-theoretical/theoretical” identification:

f : Nk Ñ N is effectively computable iff fp~xq is recursive

§ Arguments for CT:
i) inductive/descriptive
ii) convergence of definitions (Kleene)
iii) conceptual analysis (Kolmogorov & Uspensky, Gandy, Sieg)
iv) squeezing argument (Kreisel, Smith)

§ Assessing the arguments requires some “pre-theoretical data”:
1) intuitions about the form of a correct definition should take:

fp~xq is computable just in case there is a device of type . . .
2) some positive and negative examples – e.g.

(+) x` y, xˆ y, xy, xÒy, . . . ,Ackermann, . . . are intuitively
computable

(-) the characteristic function of Fol Validity is not (???)
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Pre-theoretical and theoretical concepts
“Pre-theoretical” “Theoretical” (e.g.)
problem decision problem X Ď N

solution effective decision algorithm – i.e.
Turing machine

reduction of X to Y Turing reduction – i.e. oracle machine φY

which computes cXpxq
X is at least as easy as Y X ďT Y

X and Y are equally difficult X ”T Y iff pX ďT & Y ďT Xq

degree of difficulty of X degT pXq “ |tY : X ”T Y u|
– i.e. Turing degree

‘amount’ of difficulty of X position of X in DT “ xDT ,ďT y

– i.e. the Turing degrees

NB the “e.g.” . . .
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Pre-theoretical and theoretical concepts
“Pre-theoretical” “Theoretical” (e.g.)
problem decision / function / mass problem

optimization / probabilistic problem, . . .
solution effective procedural / functional

feasible / approximation / probabilistic algorithm
reduction of X to Y Turing, m-1, 1-1, truth table, enumeration, Medvedev, Muchnik, . . .

poly. time reduction, log-space reduction, . . .
X is at least as easy as Y X ďT Y,X ď1 Y,X ďm Y,X ďtt Y,X ďe Y,X ďs Y,X ďw Y, . . .

ďP
T ,ď

P
m,ď

L
T ,ď

L
m, . . . (Cook versus Karp)

X and Y are equally difficult X ď˚ Y iff pX ď˚ & Y ď˚ Xq

degree of difficulty of X deg˚pXq “ |tY : X ”˚ Y u|

‘amount’ of difficulty of X position of X in D˚ “ xD˚,ď˚y

NB: the last three are “parametric” in the defn. of ˚.
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CT for degrees and reduction?

§ Claims requiring careful historical argumentation:

1) Like effectively computable, the concepts of problem and
reduction are “interesting epistemological notions” in
Gödel’s sense (i.e. pre-1936).

2) But unlike effectively computable, our intuitions about
reducibilty are not “absolute” in Gödel’s sense. Nor do they
admit as robust a class of positive and negative examples for
testing definitions (at least in computability theory).

3) So unlike the case of computable, we should expect (at best) a
parametric (“formalism dependent”) analysis of reducibility to
parallel Church’s Thesis.

§ Now some brief, historically inadequate remarks about 1)-3).
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Kolmogorov (1932)
We do not define the notion of a problem but explain it by means of some
examples:
1) Find four integers x, y, z and n such that

xn ` yn “ zn n ą 2

2) Prove that Fermat’s theorem is false.
3) Construct a circle passing through three given points px, y, zq.
4) Given one root of the equation ax2 ` bx` c “ 0, find the other root.
5) Assuming that the number π has a rational expression π “ m{n find a similar

expression for the number e.
The fourth and fifth problems are examples of conditional problems; the premise
of the latter is false, and hence the fifth problem is meaningless or empty . . .¶ . . .
We believe that these examples and explanations allow us to use unambiguously
the notions of “problem” and “solution of a problem” in all the cases encountered
in specific fields of mathematics . . .¶ . . . a Ą b is the problem
“given a solution to problem a, solve problem b” or, which is the same,
“reduce the solution of problem b to the solution of problem a” .

“On the interpretation of intuitionistic logic”, pp. 151-152
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[Aside on mass problems]

§ None of Kolmogorov’s examples are decision problems X Ď N.
§ Nor are they mass problems . . .

§ Medvedev (1955) and Muchnik (1963) both studied the use of
mass problem to formalize the problem interpretation of IPC.

§ A mass problem is X Ď NN – e.g. complete extensions of PA.
§ To “solve” a mass problem is to “find” a set X P X .
§ X ďs Y iff De@Y P YrΦepY q P X s.
§ Ds “ xDs,ďsy forms a Brouwerian lattice.
§ By interpreting, e.g., X Ñ Y “ mintZ : Y ďs X ^ Zu
Medvedev showed that Ds gives a model of IPC.

§ This appears to have resulted from a direct attempt to
formalize the problem interpretation.

§ Observations: i) unclear if we are concerned with mass
problems outside computability theory; ii) but if we are, this
only complicates the task of giving an analysis of reduction.
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Remarks on Kolmogorov (1932)

X Ą Y is the problem “given a solution to problem X, solve problem Y ”
or equivalently (?)

“reduce the solution of Y to the solution of X”

§ Let’s assume that X,Y Ď N are decision problems.
§ Two interpretations of given a solution:

i) given an instance x P X
ii) given Y as an oracle

§ Corresponding interpretations of reduce:
i1) produce an instance y P Y (for then a method for deciding Y would

yield a method for deciding XF )
ii1) produce X or cXpxq
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Reduction types
§ Kolmogorov speaks of a reduction as “a general method”
requiring “finitely many steps”.

§ Two possible types of general methods:
i2) m : NÑ N s.t. x P X iff mpxq P Y
ii2) m : 2N Ñ 2N s.t. mpY q “ cXpxq

§ Reading recursive/recursive in for “general method” in i1), ii2)
gives the standard definitions:
i3) X ďm Y iff there a recursive φepxq s.t. x P X iff φepxq P Y
ii3) X ďT Y iff there is a e s.t. φYe pxq “ cXpxq

§ Compare i2) and
§ A proof of X Ą Y is a method fpxq s.t. @xpx : X Ñ fpxq : Y q.
§ A realizer of X Ą Y is an e s.t. @xpx rn X Ñ φepxqÓ rn Y q.

§ So reading x : X or x rn X as “x P X” à la Curry-Howard,
suggests that (something like) ďm is a potential analysis of
intuitionistic implication.
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Parameters
§ Komologorov’s own characterizations of “X is reducible to Y ”
don’t seem to decide between (e.g.) ďT and (e.g.) ďm.

§ Two parametric axes:
Access What does it mean to be “given a solution to Y ”? E.g. how

many oracle queries do we get in order to decide x P X? how
can we combine them?

Uniformity What is a “general method”? E.g. does it have to be 1-1,
“effective” (recursive), “finitary” (primitive recursive), “feasible”
(P-Time), “very feasible” (LogSpace), etc.?

§ If our practices/intuitions don’t uniquely prefer a solution to
these questions, a “miracle” seems unlikely.

§ In particular, since DT is not isomorphic (or even elementary
equivalent) to Dm, a “converging definitions” argument
appears to be ruled out. (This is true already for RT and Rm.)
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Intuitive data about “difficulty”
§ Here’s another way a “miracle” might occur:

1) Maybe for certain X,Y Ď N our practices determine that X is
easier/harder/equally difficult to decide than/as Y .

2) This data might give rise to an “informal” (or “empirical”)
degree structure D “ xD,ĺy.

3) We can then compare D with the formally defined structure
D˚ for different definitions of ď˚.

4) Maybe argue for D “ D˚ by using a variant of the inductive/
descriptive or the Kreisel squeezing argument for CT?

§ Points for rest of the talk:
i) Measurement theory clarifies this methodology and provides a

potential justification for our use of terms like “degree”,
“measure”, “harder/easier” wrt computational problems.

ii) Complexity theory provides more robust data of type 1) and
hence possibly a stronger case for 4).
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Measurement theory (Krantz, Luce, Suppes, & Tversky 1971-1990)

Measurement theory studies the practice of associating numbers with

objects and empirical phenomena. It attempts to understand which

qualitative relationships lead to numerical assignments that reflect the structure of

these relationships, to account for the ways in which different measures relate to

one another, and to study the problems of error in the measurement process

. . .¶ . . . The first problem for any such theory is to justify the assignment of

numbers to objects or phenomena to pass from empirical procedures and

operations to a numerical representation of these procedures. [What is known as]

the representation problem is first to characterize the . . . abstract properties of

these procedures and observations and then to show mathematically that these

axioms permit the construction of a numerical assignment in which familiar

abstract relations and operations, such as “is greater than or equal to” (ě ) and

“plus” (`) correspond structurally to the empirical (or concrete) relations and

operations . . .¶ . . . Suppes and Zinnes (1962)
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Measurement theory (cont.)
The second fundamental problem is that of the uniqueness of the

representation – i.e., how close it is to being the only possible representation of

its type. The representation of mass, for example, is unique in every respect

except the choice of unit [i.e. “degree”]; e.g., the representation is different for

pounds than for grams or grains. Ordinary measurements of temperature,

however, are unique in everything except the choice of both unit and origin – the

Celsius and Fahrenheit scales differ not only in the size of unit but also in the zero

point. Suppes and Zinnes (1962)

§ Names: Euclid, Hemholtz, Hilbert (geometry), Hölder (physics),
Bentham, Pareto, von Neumann & Morgenstern (economics),
Krantz, Luce, Suppes, Tversky, Narens, Zines (psychology).

§ The term “degree” has been used for angle measurement since at
least the 15th century. It had started to be used for temperature
measurement by the early 18th century.
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Set up

§ E “ xE,R1, . . . , Rn, f1, . . . , fmy an empirical structure – e.g.
§ E1 “ xE1,Ày, A1 a set of rocks, x À y iff x is softer than y
§ E2 “ xE2,Ày, A2 a set of cups of tea, x À y iff x is cooler than y
§ E3 “ xE3,À, ˝y, A3 a set of rigid rods, x À y is x shorter than y,
x ˝ y “ concatenation

§ N “ xN,S1, . . . , Sn, g1, . . . , gmy a numerical structure – e.g.
N1 “ xN,ďy N2 “ xR,ďy N3 “ xR`,ď,`y

NB: N is classically assumed to be a subset of R.
§ A numerical assignment is a ψ : E Ñ N . ψpxq is homomorphism if

§ for all 1 ď i ď n and ~x P Eri , Ripx1, . . . , xriq iff Sipψpx1q . . . , ψpxriqq
§ for all 1 ď i ď m and ~x P Eqi ,
ψpfpx1, . . . , xqiqq “ gpψpx1q, . . . , ψpxqiqq

NB: A homomorphism will typically be neither 1-1 nor onto.
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Extensive measurement and representation

§ A paradigm case of extensive measurement is where the empirical
structure is E “ xE,À, ˝, ey s.t.

§ E = (e.g.) set of weights or rods (idealized)
§ We can check if a À b holds by performing an empirical
measurement – e.g. placing a and b in a pan balance.

§ a ˝ b “ c if (e.g.) if a, b balance with c.
§ e P E is a choice of unit (e.g. a “standard” weight or rod).

§ In such cases, we often expect that E will satisfy axioms Γ.

§ A representation theorem is of the form

If E |ù Γ, then there is a numerical structure N and a homorphism
ψ : E Ñ N

§ E.g. E |ù Γ = the axioms of an Archimedean, totally ordered group.

§ Holder’s Theorem (part i): If E |ù Γ, then there is a homomorphism
ψpxq from E into N “ xR,ď,`, 0y.
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Scales and uniqueness

§ The set of scales for N based on E is the the set S of
homomorphisms from N to E.

§ S ‰ H iff there is a representation theorem for N wrt E.
§ A uniqueness theorem is a characterization of S.
§ E.g. Holder’s Theorem (part ii): If E |ù Γ and ψ, χ : E Ñ R
are homomorphisms from E into N “ xR,ď,`, 0y, then
Da P R` s.t. χpxq “ a ¨ ψpxq.

§ Scale types:
§ ratio: ψ P S ñ @a P R`, a ¨ ψpxq P S

zero and ratios meaningful – e.g. mass, length, duration, angle
§ interval: ψ P S ñ @a P R`@b P R, a ¨ ψpxq ` b P S

differences and their ratios meaningful – e.g. temperature
§ ordinal: ψ P S ñ @ strict mono f : R` Ñ R`, f ˝ ψpxq P S

only order meaningful – e.g. hardness (Mohs), wind (Beaufort)
§ nominal: ψ P S ñ @ f : R` Ñ R`, f ˝ ψpxq P S

arbitrary relation to number – e.g. social security numbers
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Artefacts

§ A representational artefact occurs when we “read back” a
property of the numerical structure N into the empirical
structure E which isn’t justified by a uniqueness theorem.

§ E.g. maps don’t represent color, conformal maps don’t
represent size (e.g. Greenland vs. Australia).

§ Other examples:
§ interval: no “intrinsic” relation b/t the meter bar and 1 P R
§ ratio: 100˝C is not “twice as hot as” 50˝C
§ ordinal: fluorite is not “twice as hard as” gypsum, nor is
|hpfluoriteq ´ hpgypsumq| “ 2 ¨ |hpgypsumq ´ hptalcq|
meaningful

§ nominal: I am not not odd (even though my social security
number ends in 3).
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Setting up the computational case

§ The “empirical” structure C “ xC,Ày consists of
§ a class of problems C – i.e. sets X0, X1, . . . Ď N
§ X À Y iff we judge X to be at least as easy to decide as Y

§ (Much of measurement theory was developed to account for
similar sorts of judgements – e.g. of pitch, intensity,
preference, etc. – which don’t determine extensive structures.)

§ Possible “empirical data” about À:
RelPrime Ä Primes Ä Factors Ä K Ä Tot Ä Rec

Also À should presumably be reflexive and transitive.
§ So the “numerical structure” will be D “ xD,ĺy where X « Y
iff X À Y & Y À X, D “ the set of « equivalence classes.

§ Do we have any pretheoretical reasons to expect that D can
or cannot be a subset of R?
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Setting up the computational case (cont.)

C “ xC,Ày C{«
ÝÝÑ D “ xD,ĺy

?
–

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

DT “ xDT ,ďT y

Dm “ xDm,ďmy

Dtt “ xDtt,ďtty

D1 “ xD1,ď1y

...

Philosophical claims about this methodology:

1) When we talk about degree structures “measuring difficulty”, the
measure-theoretic framework is in background.

2) The “empirical data” is messy and probably fails to yield a robust
axiomatization of C.

3) So we should be concerned about the representation and uniqueness
problems when we speak of a given definition D˚ as a scale for
“measuring difficulty”.
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Difficulties with the computational case

§ Since we can’t have 2ℵ0 many judgements, maybe we need to
restrict to (e.g.) r.e. or arithmetical degrees.

§ Maybe Primes,K,Tot are “natural” examples of problems such
that X Ä Y Ä Z and. degT pXq “ 0, degT pY q “ 01, degT pZq “ 02.

§ But are these judgements about difficulty or definability when
extended to 0n for n ě 2?

§ We make judgements within 0 – e.g. Primes vs. Factors.

§ Do we have judgements about incomplete or incomparable r.e.
degrees? [The “naturalness” debate.]

§ Do our judgements attest to what kind of scale D should be? E.g.
should ĺ be a total order? lattice? distributive? minimal pairs?
automorophisms?

§ Without such answers, there’s little chance of axiomatizing our
judgements about À and hence little chance of proving
representation or uniqueness theorem about C wrt D˚. 27/40
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Discoveries and artefacts
§ Properties of DT : non-distributive upper-semilattice with least

element, embeds every countable partial order, not very homogenous –
e.g. DT ı DT pě 0ω

q, few (one?) automorphisms, bi-interpretable with
true second-order arithmetic, not absolute wrt ZFC.

§ Properties of Dm: distributive, all ideals are upper-semilattices with
least element & countable predecessor property of cardinality ď 2ℵ0 ,
homogeneous (all cones are isomorphic), many (22

ℵ0 ) automorphisms,
bi-interpretable with true second-order arithmetic, absolute wrt ZFC.

§ Properties of D1: not an upper or lower semilattice, bi-interpretable
with true second-order arithmetic.

§ Methodological Questions:
§ Are any of these genuine “discoveries” about our
pre-theoretical concept of difficulty?

§ Are any of the properties of D˚ artefacts of using one
definition of ď˚ over another to measure difficulty?
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A brief early history

1965 Cobham noted the robustness of polynomial time
computability, defined the class P, proposed X P P as a
necessary condition for feasible decidability.

1965 Edmonds gave an informal characterization of NP and
suggested (essentially) NP-completeness as a sufficient
condition for intractability.

1971-3 Cook defined polynomial time Turing reducibility (ďPT ) and
proved that SAT is NP-complete (Levin did this with ďPm).

1972 Karp defined polynomial time m-1 reducibility (ďPm) and
showed that 21 “specific, natural” problems were NP-complete
relative to ďPm.

§ Of Karp’s 21 problems, at least 11 had been previously stated
in the literature of graph theory, combinatorial optimization,
operations research, etc.
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Karp’s diagram

CLIQUE 

I 
NODE 
COVER 

FEEDBa 
NODE SET ARC SET HAMILTON COVERING 

CIRCUIT 

UNDIRECTED 
HAMILTON 
CIRCUIT 

SATISFIABILITY 

0-1 INTEGER 
PROGRAMMING 

SET 
PACKING 

SATISFIABILITY WITH AT 
MOST 3 LITERALS PER CLAUSE 

CHROMATIC NUMBER 

EXACT CLIQUE 
COVER COVER 

)-DIMENSIONAL z 
MATCHING SET TREE 

SEQUENCING PARTITION 

MAX CUT 

FIGURE 1 - Complete Problems 

:::0 n 
:I: 
)> 
:::0 
0 

)> 
:::0 ., 

Davis & Putnam 1960

Dantzig 1963

Gilbert 1967

Hamilton 1856

Matthews   1896

Dinic 1970
Edmonds & Karp 1972

Luce & Perry 1949
Harary & Ross 1957

Hall 1935/1948

Edmonds 1965

Graham 1966
Lawler & Moore 1969

TRAVELING SALEMAN
Menger 1930
Bellman 1962

Erdos & 
Posa
1965

-

= Already in the literature
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Polynomial time degrees in practice

§ Karp’s problems all have degree 0 (in fact, they are all in EXP).

§ Pre- and post-1971 much effort had already been spent
searching for efficient algorithms for certain X which seem
hard in practice.

§ Some outcomes:
§ Feasible algorithms – e.g. Bipartite Matching,Primes
§ Parameterized complexity – e.g. Vertex Cover.
§ Approximation algorithms – e.g. Bin Packing
§ Average case complexity – e.g. Sat solvers.
§ Dynamic programming – e.g. Tsp.
§ Little to no progress – e.g. Set Cover.

§ Practical questions:
§ When can we conclude X is intractable – i.e. “feasibly
unsolvable” or “unsolvable in practice”? (complicated)

§ Which reduction notion should we use?
31/40
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Polynomial time degrees in practice (cont.)

§ Completeness proofs for “natural” problems (like Karp’s)
generally yield m-1 reductions. However . . .

§ DP
m (distributive) is not are not elementarily equivalent to DP

T

(non-distributive).
§ ďP

T and ďP
m don’t coincide on EXP – e.g. there are problems

which are EXP-complete wrt to ďP
T (or ďP

tt) but not ďP
m.

§ This conjectured to be true for NP (but unknown).
§ Complementation and NP.

§ Note that X ďT X and X ďP
T X.

§ But compare SAT and SAT:
i) ϕ P SAT iff Dvrrϕssv “ 1.
ii) ϕ P SAT iff @vrrϕssv “ 0

§ It certainly seems like SAT Â SAT.
§ Presuming NP ‰ coNP, this seems like a point in favor of
using ďPm over ďPT to measure feasibility.
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Locating problems
PSPACE

NP coNP

P

PH

NCPRIMES

FACTORIZATION

GARPH
ISOMORPHISM

SATTSP

RELPRIME

INT PROGRAMMING

SAT
___

QBF

MATRIX
MULT

CIRCUIT
MINIMIZATION

QBFk

ADDITION

33/40



Preliminaries CT for degrees? Measurement theory Computability vs complexity

“Difficulty” in complexity theory

Matrix Mult Ä Primes Ä Factors Ä

#

Sat
Sat

Ä

QBFk Ä QBF

§ These are all “specific, natural” problems of degree 0.
§ There are both practical and theoretical arguments for each
instance of “Ä”.

§ It is currently unknown if Ä can be replaced by ňPm.
§ As Factors P NPX coNP, a heuristic case can be given
that its ďPm-degree is intermediate between P and NP

§ I.e. a candidate for a “natural” non-complete member of
NP´P?

§ Upshot: more robust “empirical data” À, fewer separation
results about (e.g.) ďPm.
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