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THEOREMS AS PROBLEMS

Look at “ordinary” theorems:

I (König’s lemma)
Every infinite, finitely branching tree has an infinite path.

I (Ramsey’s theorem)
Every k-coloring has an infinite monochromatic subset.

I (The atomic model theorem)
Every complete atomic theory has an atomic model.

I ...
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THEOREMS AS PROBLEMS

Many theorems P are of the form

(∀X)[Φ(X)→ (∃Y)Ψ(X,Y)]

where Φ and Ψ are arithmetic formulas.

We may think of P as a class of problems.
I An X such that Φ(X) holds is an instance.
I A Y such that Ψ(X,Y) holds is a solution to X.
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STRENGTH OF A THEOREM

Some theorems are more effective than others.

Theorem (Intermediate value theorem)
For every continuous function f over [a, b] and every y ∈ [f (a), f (b)],
there is some x ∈ [a, b] such that f (x) = y.

Theorem (König’s lemma)
Every infinite, finitely branching tree has an infinite path.
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STRENGTH OF A THEOREM

Provability strength
I Reverse mathematics
I Intuitionistic reverse mathematics

Computational strength
I Computable reducibility
I Uniform reducibility
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Provability approach
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REVERSE MATHEMATICS

Goal

Determine which axioms are required to prove ordinary
theorems in reverse mathematics.

I Simpler proofs
I More insights

Subsystems of second-order arithmetic.
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BASE THEORY RCA0

I Basic Peano axioms

I Σ0
1 induction scheme

(ϕ(0) ∧ ∀n.(ϕ(n)→ ϕ(n + 1)))→ ∀n.ϕ(n)

where ϕ(n) is any Σ0
1 formula of L2

I ∆0
1 comprehension scheme

∀n(ϕ(n)↔ ψ(n))→ ∃X.∀n.(x ∈ X↔ ϕ(n))

where ϕ(n) is any Σ0
1 formula of L2 in which X does not occur

freely and ψ(n) is any Π0
1 formula of L2.
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HOW TO THINK ABOUT RCA0 ?

RCA0 captures computable mathematics

RCA0 has modelM = {ω,S, <,+, ·}where
I ω is the set of the standard integers
I S = {X ∈ 2ω : X is computable } is the second-order part
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NON-PROVABILITY OVER RCA0

Let P be a statement.

How to prove that RCA0 6` P?

A method: Exhibit a computable instance I of P which admits
no computable solution.



INTRODUCTION PROBABILISTIC THEOREMS RAMSEY’S THEOREM CONCLUSION

NON-PROVABILITY OVER RCA0

LetM be the model of RCA0 whose second-order part are the
computable sets.

I M |= RCA0;
I Because I is computable, I ∈M;
I Because I does not have a computable solution,M 6|= P.

Therefore RCA0 6` P.
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PROBABILISTIC SOLUTIONS

Are there probabilistic algorithms to solve
instances with no computable solution?
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PROBABILISTIC SOLUTIONS

Definition (n-RAN)
“For every set X, there is a Martin-Löf random real relative
to X(n−1)”.

Given a statement P, does RCA0 ` n-RAN→ P for some n ?
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PROBABILISTIC SOLUTIONS

Usually not

Definition (No randomized algorithm)
A statement P has the NRA property if it has a computable
instance I such that

µ{X : X computes a solution to I} = 0
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PROBABILISTIC SOLUTIONS

If P has the NRA property
then RCA0 6` n-RAN→ P for every n.

If P has the NRA property and RCA0 ` Q→ P
then Q has the NRA property.
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PROBABILISTIC SOLUTIONS

Many weak statements not provable over RCA0
have the NRA property.
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INTUITION

I Many proofs of a computable P-instance with no
computable solutions are diagonalizations.

I Many diagonalizations can be done by block, defeating
positive measure of oracles.
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DIAGONAL NON-COMPUTABILITY

Definition (Diagonal non-computability)
A function f is DNC relative to X if (∀e)[f (e) 6= ΦX

e (e)]

I Simplest example of non-computable function.
I Cantor’s diagonal argument.
I Unifying framework for comparing theorems.
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DIAGONAL NON-COMPUTABILITY

Theorem
The following are computably equivalent:
I DNC functions relative to X
I Infinite subset of X-Martin-Löf randoms
I Escaping X-c.e. sets of computably bounded size

n-DNC
For every set X, there is a function DNC relative to X(n−1).
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DIAGONAL NON-COMPUTABILITY

Theorem
The following are computably equivalent:
I {0, 1}-valued DNC functions relative to X
I Computing an infinite path through an X-computable infinite

binary tree
I Choosing between two Π0,X

2 statements

n-DNC2

For every set X, there is a {0, 1}-valued function DNC relative
to X(n−1).
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DIAGONAL NON-COMPUTABILITY

Theorem
RCA0 ` n-RAN→ n-DNC

Hint: To define f (n), pick a number at random in [0, 2n+2].

Theorem (Jockusch & Soare)
n-DNC2 has the NRA property.

Hint: A finite range enables us to apply the pigeonhole
principle and defeat a block of oracles.
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Ramsey’s theorem
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RAMSEY’S THEORY

Given some size s, every sufficiently large
collection of objects has a sub-collection of size s,
whose objects satisfy some structural properties.
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RAMSEY’S THEOREM

Definition
Given a coloring f : [N]n → k, a set H is f -homogeneous if there exists
a color i < k such that f ([H]n) = i.

RTn
k (Ramsey’s theorem)

Every coloring f : [N]n → k has an infinite f -homogeneous set.
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COHESIVENESS

Definition
Given a sequence of sets R0,R1, . . . , an infinite set C is ~R-cohesive if
for every i, C ⊆∗ Ri or C ⊆∗ Ri.

COH (Cohesiveness)
Every sequence of sets R0,R1, . . . has an ~R-cohesive set.
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COHESIVENESS

Theorem (Jockusch & Stephan)
The following are computably equivalent
I COH
I For every set X, there is a {0, 1}-valued function DNC relative

to X′.

Corollary (Jockusch & Soare)
COH has the NRA property.
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THE ATOMIC MODEL THEOREM

AMT (Atomic model theorem)
Every complete atomic theory has an atomic model.

Theorem (Hirschfeldt, Shore, Slaman & Conidis)
The following are computably equivalent:
I AMT
I For every ∆0

2 function f , there exists a function g such that
f (x) ≤ g(x) for infinitely many x.
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THE ATOMIC MODEL THEOREM

Theorem (Kurtz)
AMT has the NRA property.

Hint: ∅′ is uniformly almost everywhere dominating.
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THE RAINBOW RAMSEY THEOREM

Definition (k-bounded function)
A coloring function Nn → N is k-bounded if
|{x ∈ Nn : f (x) = c}| ≤ k for every color c.

RRTn
k (Rainbow Ramsey theorem)

For every k-bounded coloring function f : Nn → N there is an
infinite set H such that f � Hn is injective.
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THE RAINBOW RAMSEY THEOREM

Theorem (Csima & Mileti)
RCA0 ` 2-RAN→ RRT2

2

Theorem (Miller)
RCA0 ` RRT2

2 ↔ 2-DNC

Hint: The set of “bad” one-point extensions is a computably
bounded ∅′-c.e. set.
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THE RAINBOW RAMSEY THEOREM

Theorem (Bienvenu, Patey & Shafer)
RRT3

2 has the NRA property.

Hint: RRT3
2 implies the atomic model theorem over RCA0.
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THE FINITE INTERSECTION PROPERTY

Definition
A sequence of set A0,A1, . . . has the FIP if the intersection of
finitely many sets is non-empty.

FIP (Finite intersection property)
Every sequence of sets has a maximal subsequence having the
FIP.

I Equivalent to the axiom of choice in set theory.
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THE FINITE INTERSECTION PROPERTY

Definition
Fix a set of strings S. A real G meets S if it has some initial
segment in S. A real G avoids S is it has an initial segment with
no extension in S. A real X is n-generic if it meets or avoids
every Σ0

n set of strings.

n-GEN (n-genericity)
For every set X, there is a real n-generic relative to X.

Theorem (Cholak, Downey, Diamondstone, Greenberg,
Igusa & Turetsky)
RCA0 ` FIP↔ 1-GEN
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THE FINITE INTERSECTION PROPERTY

Theorem (Kurtz, Kautz)
RCA0 ` 2-RAN→ FIP

Hint: Use a fireworks argument.

Is 2-RAN needed? What about 2-DNC?
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CONCLUSION

I Few theorems studied in reverse mathematics and not
provable over RCA0 admit probabilistic algorithms.

I All known examples have natural computability-theoretic
characterization and admit a universal instance.

I Is 1-genericity a reverse mathematical consequence of the
rainbow Ramsey theorem for pairs?
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QUESTIONS

Thank you for listening!
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