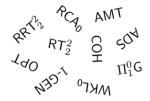
The role of randomness in reverse mathematics

Ludovic PATEY PPS, Paris 7



June 17, 2015

THEOREMS AS PROBLEMS

Look at "ordinary" theorems:

- (König's lemma)
 Every infinite, finitely branching tree has an infinite path.
- (Ramsey's theorem)
 Every *k*-coloring has an infinite monochromatic subset.
- (The atomic model theorem)
 Every complete atomic theory has an atomic model.

▶ ...

THEOREMS AS PROBLEMS

Many theorems P are of the form

 $(\forall X)[\Phi(X) \to (\exists Y)\Psi(X,Y)]$

where Φ and Ψ are arithmetic formulas.

We may think of P as a class of problems.

- An *X* such that $\Phi(X)$ holds is an instance.
- A Y such that $\Psi(X, Y)$ holds is a solution to X.

STRENGTH OF A THEOREM

Some theorems are more effective than others.

Theorem (Intermediate value theorem) For every continuous function f over [a, b] and every $y \in [f(a), f(b)]$, there is some $x \in [a, b]$ such that f(x) = y.

Theorem (König's lemma) *Every infinite, finitely branching tree has an infinite path.*

STRENGTH OF A THEOREM

Provability strength

- Reverse mathematics
- Intuitionistic reverse mathematics

Computational strength

- Computable reducibility
- Uniform reducibility

Provability approach

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

REVERSE MATHEMATICS

Goal

Determine which axioms are required to prove ordinary theorems in reverse mathematics.

- Simpler proofs
- More insights

Subsystems of second-order arithmetic.

BASE THEORY RCA_0

- Basic Peano axioms
- Σ_1^0 induction scheme

 $(\varphi(0) \land \forall n.(\varphi(n) \to \varphi(n+1))) \to \forall n.\varphi(n)$

where $\varphi(n)$ is any Σ_1^0 formula of L_2

• Δ_1^0 comprehension scheme

 $\forall n(\varphi(n) \leftrightarrow \psi(n)) \rightarrow \exists X. \forall n. (x \in X \leftrightarrow \varphi(n))$

where $\varphi(n)$ is any Σ_1^0 formula of L_2 in which *X* does not occur freely and $\psi(n)$ is any Π_1^0 formula of L_2 .

・ロト・(部ト・モト・モー・)へ()

How to think about RCA_0 ?

RCA₀ captures computable mathematics

 RCA_0 has model $\mathcal{M} = \{\omega, S, <, +, \cdot\}$ where

- ω is the set of the standard integers
- $S = \{X \in 2^{\omega} : X \text{ is computable }\}$ is the second-order part

Non-provability over RCA_0

Let P be a statement.

How to prove that $\mathsf{RCA}_0 \not\vdash \mathsf{P}$?

A method: Exhibit a computable instance *I* of **P** which admits no computable solution.

NON-PROVABILITY OVER RCA₀

Let \mathcal{M} be the model of RCA_0 whose second-order part are the computable sets.

- $\mathcal{M} \models \mathsf{RCA}_0$;
- Because *I* is computable, $I \in \mathcal{M}$;
- Because *I* does not have a computable solution, $\mathcal{M} \not\models \mathsf{P}$.

Therefore $RCA_0 \not\vdash P$.

PROBABILISTIC SOLUTIONS

Are there probabilistic algorithms to solve instances with no computable solution?

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

PROBABILISTIC SOLUTIONS

Definition (*n*-RAN)

"For every set *X*, there is a Martin-Löf random real relative to $X^{(n-1)}$ ".

Given a statement P, does $\mathsf{RCA}_0 \vdash n$ -RAN \rightarrow P for some *n* ?

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

PROBABILISTIC SOLUTIONS

Usually not

Definition (No randomized algorithm)

A statement P has the NRA property if it has a computable instance *I* such that

 μ {*X* : *X* computes a solution to *I*} = 0

PROBABILISTIC SOLUTIONS

If P has the NRA property then $\mathsf{RCA}_0 \not\vdash n\text{-}\mathsf{RAN} \to \mathsf{P}$ for every *n*.

If P has the NRA property and $\mathsf{RCA}_0 \vdash \mathsf{Q} \to \mathsf{P}$ then Q has the NRA property.

RAMSEY'S THEOREM

PROBABILISTIC SOLUTIONS

Many weak statements not provable over RCA_0 have the NRA property.

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

INTUITION

- Many proofs of a computable P-instance with no computable solutions are diagonalizations.
- Many diagonalizations can be done by block, defeating positive measure of oracles.

DIAGONAL NON-COMPUTABILITY

Definition (Diagonal non-computability) A function *f* is DNC relative to *X* if $(\forall e)[f(e) \neq \Phi_e^X(e)]$

- Simplest example of non-computable function.
- Cantor's diagonal argument.
- Unifying framework for comparing theorems.

DIAGONAL NON-COMPUTABILITY

Theorem

The following are computably equivalent:

- ► DNC functions relative to X
- ► Infinite subset of X-Martin-Löf randoms
- ► Escaping X-c.e. sets of computably bounded size

n-DNC

For every set *X*, there is a function DNC relative to $X^{(n-1)}$.

DIAGONAL NON-COMPUTABILITY

Theorem

The following are computably equivalent:

- ► {0,1}-valued DNC functions relative to X
- Computing an infinite path through an X-computable infinite binary tree
- Choosing between two $\Pi_2^{0,X}$ statements

n-DNC₂

For every set *X*, there is a $\{0, 1\}$ -valued function DNC relative to $X^{(n-1)}$.

DIAGONAL NON-COMPUTABILITY

Theorem $RCA_0 \vdash n$ -RAN \rightarrow n-DNC

Hint: To define f(n), pick a number at random in $[0, 2^{n+2}]$.

Theorem (Jockusch & Soare) *n*-DNC₂ *has the NRA property.*

Hint: A finite range enables us to apply the pigeonhole principle and defeat a block of oracles.

Ramsey's theorem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

RAMSEY'S THEORY

Given some size *s*, every sufficiently large collection of objects has a sub-collection of size *s*, whose objects satisfy some structural properties.

RAMSEY'S THEOREM

Definition Given a coloring $f : [\mathbb{N}]^n \to k$, a set H is f-homogeneous if there exists a color i < k such that $f([H]^n) = i$.

RT_k^n (Ramsey's theorem) Every coloring $f : [\mathbb{N}]^n \to k$ has an infinite *f*-homogeneous set.

COHESIVENESS

Definition Given a sequence of sets $R_0, R_1, ..., an$ infinite set C is \vec{R} -cohesive if for every $i, C \subseteq^* R_i$ or $C \subseteq^* \overline{R_i}$.

COH (Cohesiveness)

Every sequence of sets R_0, R_1, \ldots has an \vec{R} -cohesive set.

COHESIVENESS

Theorem (Jockusch & Stephan)

The following are computably equivalent

- ► COH
- ► For every set X, there is a {0,1}-valued function DNC relative to X'.

Corollary (Jockusch & Soare) COH *has the NRA property.*

THE ATOMIC MODEL THEOREM

AMT (Atomic model theorem)

Every complete atomic theory has an atomic model.

Theorem (Hirschfeldt, Shore, Slaman & Conidis) *The following are computably equivalent:*

- ► AMT
- ► For every Δ_2^0 function f, there exists a function g such that $f(x) \le g(x)$ for infinitely many x.

THE ATOMIC MODEL THEOREM

Theorem (Kurtz) AMT *has the NRA property.*

Hint: \emptyset' is uniformly almost everywhere dominating.

The rainbow Ramsey theorem

Definition (*k*-bounded function) A coloring function $\mathbb{N}^n \to \mathbb{N}$ is *k*-bounded if $|\{x \in \mathbb{N}^n : f(x) = c\}| \le k$ for every color *c*.

RRT_{k}^{n} (Rainbow Ramsey theorem)

For every *k*-bounded coloring function $f : \mathbb{N}^n \to \mathbb{N}$ there is an infinite set *H* such that $f \upharpoonright H^n$ is injective.

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆日 ト

The rainbow Ramsey theorem

```
Theorem (Csima & Mileti)

RCA_0 \vdash 2\text{-}RAN \rightarrow RRT_2^2
```

```
Theorem (Miller)
\mathsf{RCA}_0 \vdash \mathsf{RRT}_2^2 \leftrightarrow 2\text{-}\mathsf{DNC}
```

Hint: The set of "bad" one-point extensions is a computably bounded \emptyset '-c.e. set.

THE RAINBOW RAMSEY THEOREM

Theorem (Bienvenu, Patey & Shafer) RRT_2^3 has the NRA property.

Hint: RRT_2^3 implies the atomic model theorem over RCA_0 .

THE FINITE INTERSECTION PROPERTY

Definition A sequence of set A_0, A_1, \ldots has the FIP if the intersection of finitely many sets is non-empty.

FIP (Finite intersection property) Every sequence of sets has a maximal subsequence having the FIP.

• Equivalent to the axiom of choice in set theory.

THE FINITE INTERSECTION PROPERTY

Definition

Fix a set of strings *S*. A real *G* meets *S* if it has some initial segment in *S*. A real *G* avoids *S* is it has an initial segment with no extension in *S*. A real *X* is *n*-generic if it meets or avoids every Σ_n^0 set of strings.

n-GEN (*n*-genericity)

For every set *X*, there is a real *n*-generic relative to *X*.

Theorem (Cholak, Downey, Diamondstone, Greenberg, Igusa & Turetsky) RCA₀ \vdash FIP \leftrightarrow 1-GEN

RAMSEY'S THEOREM

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

THE FINITE INTERSECTION PROPERTY

Theorem (Kurtz, Kautz) $\mathsf{RCA}_0 \vdash 2\text{-}\mathsf{RAN} \rightarrow \mathsf{FIP}$

Hint: Use a fireworks argument.

Is 2-RAN needed? What about 2-DNC?

CONCLUSION

- ► Few theorems studied in reverse mathematics and not provable over RCA₀ admit probabilistic algorithms.
- ► All known examples have natural computability-theoretic characterization and admit a universal instance.
- ► Is 1-genericity a reverse mathematical consequence of the rainbow Ramsey theorem for pairs?

References

Chris J Conidis.

Classifying model-theoretic properties. Journal of Symbolic Logic, pages 885–905, 2008.

Barbara F Csima and Joseph R Mileti.

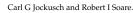
The strength of the rainbow Ramsey theorem. Journal of Symbolic Logic, 74(04):1310–1324, 2009.

Denis R. Hirschfeldt, Richard A. Shore, and Theodore A. Slaman.

The atomic model theorem and type omitting. Transactions of the American Mathematical Society, 361(11):5805–5837, 2009.

C Jockusch and R Soare.

Degrees of members of Π_1^0 classes. Pacific Journal of Mathematics, 40:605–616, 1972.



 Π_1^0 classes and degrees of theories.

Transactions of the American Mathematical Society, 173:33-56, 1972.

RAMSEY'S THEOREM

CONCLUSION

QUESTIONS

Thank you for listening!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □