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Motivation

Randomness and constructive mathematics

Algorithmic randomness

A formulation of randomness through computation.

Constructive mathematics
A foundation of mathematics preserving computational meaning.

Observation
These two subjects must be connected. ...but how are they connected?
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Motivation

Constructive measure theory and probability

Bishop 1967

Any constructive approach to mathematics will find a crucial test in the ability to assimilate the
intricate body of mathematical thought called measure theory. [...] It was recognized by
Lebesgue, Borel, and other pioneers in abstract function theory that the mathematics they were
creating relied, in a way almost unique at the time, on set-theoretic methods, leading to results
whose constructive content was problematical.

Brouwer 1919, et al.
Šanin 1962, et al.
Demuth 1965, et al.
Bishop 1967, et al.
Martin-Löf 1970
etc.

Also...
Friedman / Ko 1982 (Poly-time analysis)
Pour-El / Richards 1989 (Comp. analysis)
Yu / Simpson 1990, et al. (Reverse math)
Edalat 1995, et al. (Domain theory)
Weihrauch 1997, et al. (Type-2 effectivity)
etc.1

1Apologies to any tradition I left out.
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Motivation

Algorithmic randomness and “constructive null sets”

Martin-Löf 1966 (Emphasis mine)

In this paper it is shown that the random elements as defined by Kolmogorov possess all
conceivable statistical properties of randomness. They can equivalently be considered as the
elements which withstand a certain universal stochasticity test. The definition is extended to
infinite binary sequences and it is shown that the non random sequences form a maximal
constructive null set.

Schnorr 1969 (Emphasis mine)

Martin-Löf has defined random sequences to be those sequences which withstand a certain
universal stochasticity test. On the other hand one can define a sequence to be random if it is
not contained in any [set] of measure zero in the sense of Brouwer. Both definitions imply
that these random sequences possess all statistical properties which can be checked by
algorithms. We draw a comparison between the two concepts of constructive null sets and
prove that they induce concepts of randomness which are not equivalent. The union of all [sets]
of measure zero in the sense of Brouwer is a proper subset of the universal constructive
null set defined by Martin-Löf.
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Motivation

Randomness characterized by a.e. theorems

Randomness characterization theorem template

x is _______ random iff x satisfies ____________ for all computable _______.

MLR and Lebesgue’s thm (Demuth; Bratkka / Miller / Nies)

x is Martin-Löf random iff
f ′(x) exists for all computable f : [0,1]→R of bounded variation.

SR and Lebesgue differentiation thm (Pathak / Rojas / Simpson; Rute)

x is Schnorr random iff
1
2r

∫x+r
x−r f (y)dy converges as r→ 0 for all L1-computable functions f .

Questions

What do such results say about constructive measure theory?
What does constructive measure theory say about such results?
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Algorithmic randomness

Algorithmic randomness
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Algorithmic randomness

Effectively open sets

Recall: An effectively open (Σ0
1) set is a computable union of basic open

sets (i.e., cylinder sets for 2N or rational intervals for [0,1]).
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Algorithmic randomness

Martin-Löf randomness

Definition (Martin-Löf [1966])

A Martin-Löf test is a computable sequence of
effectively open sets Un such that µ(Un)6 2−n.
A Martin-Löf null set is a subset of

⋂
n Un for some

Martin-Löf test Un.
A Martin-Löf random is a point x not in any
Martin-Löf null set.

Clearly no computable real is Martin-Löf random.

Theorem (Martin-Löf [1966])

There is a universal Martin-Löf null set covering all other
Martin-Löf null sets.
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Algorithmic randomness

Schnorr randomness

Definition (Schnorr [1969])

A Schnorr test is a computable sequence of effectively
open sets Un such that µ(Un)6 2−n and µ(Un) is
computable in n.
A Schnorr null set is a subset of

⋂
n Un for some

Schnorr test Un.
A Schnorr random is a point x not in any Schnorr null
set.

Clearly no computable real is Schnorr random.
Clearly every Schnorr null set is a Martin-Löf null set.
Hence, every Martin-Löf random is Schnorr random.
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Algorithmic randomness

Schnorr randomness

Theorem (Schnorr [1969])

1 Schnorr randomness is strictly weaker than
Martin-Löf randomness.

2 For every Schnorr null set N, there is a computable
point not in N.

3 Hence, there is no universal Schnorr null set.

The second item is an effective version of the
following.

Theorem
Every set of measure one contains a point.
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Constructive measure theory: A mathematical dialog

Constructive measure theory
A mathematical dialog
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Constructive measure theory: A mathematical dialog

The characters

Naïve An enthusiastic new student of constructivism.
Construct A (Bishop-style) constructivist.

Int A Brouwerian intuitionist.
Russ A constructivist in the Russian school.

Compute A computability theorist / computable analyst.
Random An algorithmic randomist.
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Constructive measure theory: A mathematical dialog

Constructive mathematics

Naïve There are many approaches to constructive mathematics.
Construct Yes. However, they share a common principle:

The constructive principle

A constructive proof of “there exists a object x such that P(x)”, provides an
algorithm constructing such an x (along with a proof that P holds of x).

Int, Russ Yes, that sounds about right.
Compute Is constructive mathematics then consistent with the following?

Church’s thesis (in constructive math)

All functions (and therefore all real numbers) are computable.

Russ I accept this. Construct It is not inconsistent with my beliefs.
Int I don’t accept this. (But I also am not saying there exists a

noncomputable function either.)
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Constructive measure theory: A mathematical dialog

Computable interpretation of constructive math

Compute It seems that constructive math has a computable interpretation.

Construct When I say a real x exists...
Compute ...that is to say a computable real x exists.

Construct An open set U exists...
Compute An effectively open (Σ0

1) set U exists...

Construct The sequence xn of reals (constructively) converges.
Compute The sequence xn of reals has a limit computable uniformly from

xn.
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Constructive measure theory: A mathematical dialog

Uncountability of the continuum

Construct One can constructively prove that the set of reals is uncountable.
Naïve Wait, one can prove that? Doesn’t that violate Church’s thesis?

Construct No it does not. Cantor’s argument is constructive.
Compute There is no computable enumeration of the computable reals.

Naïve What about the classical result that the continuum is not null?
Construct That is a good question.

Compute That is like asking if the computable reals do not form an
effective null set.

Random But which type of effective null set?
Compute Yes, how does a constructivist define a null set?
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Constructive measure theory: A mathematical dialog

Cover definition of null sets

Naïve I have an idea. Let’s define it using covers (or coverings) just
like in classical Lebesgue measure theory.

Naïve’s definition of a constructive null set
A set N ⊆ [0,1] is (constructively) null if for all ε > 0 there is an ε-cover of N.

An ε-cover of N is a sequence of rational intervals {(ak,bk)}k∈N such that

N ⊆
⋃

k∈N
(ak,bk) and

∑
k∈N

|bk − ak|6 ε.

Note
∑

k∈N |bk − ak| is not assumed to constructively exist.

Instead,
∑

k∈N |bk − ak|6 ε is short-hand for ∀n
∑n−1

k=0 |bk − ak|6 ε.

Construct You are not the first to suggest this approach.
Compute That is to say that a null set is a...

Random ...a Martin-Löf null set!
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Constructive measure theory: A mathematical dialog

First paradox of singular covers

Russ Zaslavskiı̆ and Ceı̆tin [1962] showed there exist singular covers,
that is ε-covers of the computable reals for each ε < 1.

Compute Similarly, Kreisel and Lacombe [1957] showed that the
computable reals are inside a Σ0

1 set of arbitrarily small measure.
Random Also, Martin-Löf [1966] showed the computable reals are a

Martin-Löf null set.
Naïve Is this a problem? Construct Consider this argument:

First paradox of singular covers

1 Assume [0,1] is not a Naïve null set.
2 The set of computable reals is a Naïve null set (via singular covers).
3 Hence, [0,1] is not made up of only computable reals.
4 Therefore, “[0,1] is not a Naïve null set” contradicts Church’s thesis.

Construct Martin-Löf and Beeson have suggested this is a reason to deny
Church’s thesis.
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Constructive measure theory: A mathematical dialog

Second paradox of singular covers

Naïve What about the result that every set of measure one has a point?
Construct It gets even worse.

Second paradox of singular covers

1 Assume, every set of measure one contains a point.
2 The unit interval [0,1] has measure one. (Geometry, definition of

measure.)
3 There is a Naïve null set N containing all computable reals.
4 Hence, [0,1]rN is a set of measure one. (Basic measure theory.)
5 Therefore, there exists a non-computable point.

Compute A constructive proof of 1 would let us construct a
noncomputable point.
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Constructive measure theory: A mathematical dialog

Regular covers

Construct I have another solution. Let us use a more constructive null set.

Construct’s definition of a constructive null set
A set N is (constructively) null if for all ε > 0 there is a regular ε-cover of N.

A regular ε-cover of N is a sequence of rational intervals {(ak,bk)}k∈N such
that

N ⊆
⋃

k∈N
(ak,bk),

∑
k∈N

|bk − ak| converges, and
∑
k∈N

|bk − ak|6 ε.

Random That is like a Schnorr null set!
Construct Now it is constructively true that every full set contains a point.

Random Yes, one can compute a point not in a Schnorr null set.
Construct It is not surprising that Brouwer, Bishop, Demuth, and others

early constructivists used this definition of null set.
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Constructive measure theory: A mathematical dialog

Epilogue: The point-free approach

Point free I overheard you all talking. Let me suggest another “modern”
approach. Instead of thinking about measurable sets as actual
sets containing points, just think about them as formal objects in
some Boolean algebra with a metric space structure. Then a null
set is just the bottom element of this Boolean algebra. Moreover,
all the basic facts of measure theory, for example the strong law
of large numbers or even the pointwise ergodic theorem can be
expressed in this form. Some (but not all) of these theorems are
even constructively provable.

Naïve I wonder how Point free’s approach relates to that of myself
and that of Construct?
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Survey of constructive measure theory

Survey of constructive measure theory
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Survey of constructive measure theory

L.E.J. Brouwer (Intuitionist school)

Brouwer [1919] wrote a paper on constructive
measure theory.

Brouwer’s definition of measurable set and null set

An open set U is measurable if µ(U) exists.
A set N is null if it is included in a measurable open
set of arbitrarily small measure.
A set Q to measurable if for every n there is a
measurable open set Un and a basic set Vn such that

Q4Vn ⊆Un and µ(Un)6 2−n.

Notice Brouwer’s null sets are like Schnorr’s null sets.
Also Un is like a Schnorr test.
See Heyting’s book (left) for a presentation of
intuitionistic measure theory.
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Survey of constructive measure theory

N.A. Šanin (Russian school)

Šanin’s 1962 book developed a theory of constructive
measurable sets and measurable/integrable functions.

Šanin’s definition of measurable set

Consider the metric ρ(A,B) = µ(A4B) on basic sets.
This generates a constructive metric space.
A measurable set is a (constructive) point in this
metric space.

This approach avoids discussions of null sets.
Šanin’s student Kosovskiı̆ developed constructive
probability theory using this approach.
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Survey of constructive measure theory

Zaslavskiı̆ and Ceı̆tin (Russian school)

While Zaslavskiı̆ and Ceı̆tin [1962] focused on the
pathological consequences of singular coverings.
However, they include this insightful remark.

Zaslavskiı̆ and Ceı̆tin [1962] (Emphasis in original)

We call a coveringΦ regular if the sequence of numbers
∑n

k=0 |Φk| is
constructively convergent as n→∞. The set M of [constructive real
numbers] will be said to be a set of measure zero if for arbitrary ε
there can be realized a regular ε-bounded covering by intervals of the
set. [...] Consequently, in spite of the existence of constructive singular
coverings, it is possible to give a reasonable definition of the
constructive concept of a set of measure zero. Other concepts of the
constructive theory of measure can be defined in a similar way.
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Survey of constructive measure theory

O. Demuth (Russian school)

Since 1965, Demuth wrote prolifically on constructive
measure theory (see Demuth / Kučera [1979]).
While Demuth’s definitions of null set and
measurable set agree with those of Brouwer [1919]
and Zaslavskiı̆ / Ceı̆tin [1962], his definitions also
borrow ideas from Šanin [1962].

Demuth’s definition null set and measurable set

Null sets are defined via regular ε-coverings.
A function f : [0,1]→R is integrable if f = limn fn
outside of a null set for a sequence of simple functions
fn such that ∀n > m ‖fm − fn‖L1 6 2−n.
A set Q is measurable if 1Q is integrable.
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Survey of constructive measure theory

O. Demuth (Russian school)

Like the other Russian constructivists, Demuth took
the continuum to be the computable reals, hence his
measurable sets where actually sets of computable
reals.
Demuth also worked with Martin-Löf null sets
(independently of Martin-Löf).
Martin-Löf null sets were important in his
investigation of the differentiability of functions of
bounded variation (which is not a constructive
theorem).
In this case, to avoid some of the paradoxes of
singular covers, Demuth enlarged the space to incluse
all ∅ ′-computable reals.
See Kučera/Slaman [2001, Rmk. 3.5] or
Porter/Kučera/Nies [201x] for more on Demuth’s
work in randomness.
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Survey of constructive measure theory

Bishop’s School

Bishop’s 1967 book (and his later works) had a strong
influence on constructive mathematics.

He and his students wrote a lot on measure theory.

His definitions of null set and measurable set agree
with those of Brouwer and Demuth (although the
definitions themselves are very different).
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Survey of constructive measure theory

Martin-Löf

Martin-Löf is known for his early work in randomness
and his later work on constructive type theory.
In 1970 (the transitionary period) he wrote a book on
constructive mathematics, which includes a chapter
on measure theory.

Martin-Löf’s definition of measurable set
A set Q to measurable if for every n there is an open set
Un and a basic set Vn such that

Q4Vn ⊆Un and µ(Un)6 2−n.

Unlike Brouwer’s definition, µ(Un) need not exist.
Hence, Un is a Martin-Löf test.
Martin-Löf knew what this entailed...
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Survey of constructive measure theory

Martin-Löf

Martin-Löf [1970]

There are several reasons why we have chosen a more inclusive
definition of measurability than Brouwer did. First of all, the problem
has always been to find a consistent extension of the measure, first
defined for simple sets only, which goes as far as possible. Our
extension, although going further than Brouwer’s entails no departure
from the constructive standpoint.

Secondly, the fact that our definition allows the construction of an
inner limit set of measure zero which contains all constructive points,
although troublesome to those whose continuum consists of
constructive points only, is in full agreement with the intuitionistic
concept of the continuum as a medium of free choice.

Thirdly, the definition we have adopted enables us to prove a new
theorem [existence of a universal constructive null set] which may
serve as a justification of the notion of a random sequence conceived by
von Mises and elaborated by Wald and Church 1940.
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Survey of constructive measure theory

Yu and Simpson (Reverse Math)

RCA0, while not constructive, has a computable
interpretation.
Reverse math determines the minimum axioms
needed to prove a theorem (over RCA0).
WWKL (Weak-Weak König’s Lemma) says that every
closed set of positive measure contains a point.2

Theorem (Yu/Simpson)

In RCA0, the following are equivalent:
WWKL
Every sequence of intervals (an,bn) covering [0,1]
satisfies

∑∞
n=0(bn − an)> 1.

If U,V ⊆ {0,1}N are disjoint open sets such that
U∪V = {0,1}N then µ(U)+µ(V) = 1.

2Usually WWKL is defined in terms of “trees of positive measure.”
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Survey of constructive measure theory

Yu and Simpson (Reverse Math)

WWKL is also equivalent to other theorems:

For all X, there is a Martin-Löf random relative to
X.
A variant of the monotone convergence theorem.
A variant of the Vitali covering theorem.

Reverse math definition of a null set

Null sets are defined via (not necessarily regular)
ε-covers.3

Measurable sets and functions are defined in a variety
of ways depending on the paper.

3The details can very slightly from paper to paper, but I believe this is the intended definition.
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Survey of constructive measure theory

Coquand and Palmgren (Point-free constructivism)

“Point-free” approaches to constructive measure
theory are similar to those of Šanin and Kosovskiı̆.

Coquand and Palmgren [2009]4

Start with a Boolean ring R and a measure µ satisfying

(∀x ∈ R) µ(x∨y) = µ(x)+µ(y)−µ(x∧y)
(∀x ∈ R) µ(x)> 0 ↔ x , 0.

E.g. the Boolean ring of clopen sets of 2N with the
Lebesgue measure.
Extend to a complete metric space via the metric
ρ(x,y) = µ(x+y).

Using this approach they state and constructively
prove Kolmogorov’s 0-1 law, the first Borel-Cantelli
lemma, and the strong law of large numbers.

4This is the first of two approaches to measurable sets in their paper.
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Three approaches to measurable objects: why they are basically the same

Three approaches to measurable objects
and why they are basically the same
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Three approaches to measurable objects: why they are basically the same

The objects of measure theory

There are five main types of objects in Lebesgue measure theory:
Null sets
Measurable sets
Measurable functions
Integrable functions
Almost-uniform convergence

is classically equivalent to a.e. convergence on a prob. space.

There are three main approaches to defining such objects:
Brouwer/Schnorr approach:

Define modulo a Schnorr null set
Martin-Löf approach:

Define modulo a Martin-Löf null set
Point-free approach:

Define modulo a null set using a comp. metric space

Jason Rute (Penn State) Randomness and Constructive Math VAI 2015 35 / 52



Three approaches to measurable objects: why they are basically the same

Brouwer/Schnorr approach

A basic set is a finite union of basic open sets. (A clopen set on 2N.)

Brouwer/Schnorr measurable set (Brouwer [1919], Heyting [1956])

A set Q to Brouwer/Schnorr effectively measurable if there is a computable
sequence of basic sets (Bn) such that

Q4Bn ⊆Un for some Schnorr test (Un).

Same or equivalent approaches can be found in:
Brouwer et al. (Intuitionism)
Demuth et al. (Russian school)
Bishop et al. (Bishop-style)
Pathak/Rojas/Simpson, Miyabe, Rute (Randomness and Schnorr
layerwise computability)
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Three approaches to measurable objects: why they are basically the same

Martin-Löf approach

Martin-Löf measurable set (Martin-Löf’s book [1970])

A set Q is Martin-Löf effectively measurable if there is a computable
sequence of basic sets (Bn) such that

Q4Bn ⊆Un for some Martin-Löf test (Un).

Same or equivalent approaches can be found in:
Martin-Löf
Yu/Simpson et al. (Reverse math)
Edalat (Domain theory)
Hoyrup/Rojas (Randomness and layerwise computability)
Pathak (Randomness)
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Three approaches to measurable objects: why they are basically the same

Point-free approach

Let ρ be the metric first defined on the basic sets via ρ(A,B) = µ(A4B).
The completion of ρ is the Boolean algebra of measurable sets mod null.

Point-free measurable set (Šanin [1962])

A set Q is point-free effectively measurable if there is a computable sequence
of basic sets (Bn) such that

µ(Q4Bn)6 2−n.

Same or equivalent approaches can be found in:
Šanin, Kosovskii (Russian school)
Friedman/Ko (polytime analysis)
Pour-El/Richards, Wu/Ding, Edalat, etc. (Computable analysis)
Yu/Simpson (Reverse math)
Coquand/Palmagren, Spitters (modern constructive math)
Any paper on L1-computability
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Three approaches to measurable objects: why they are basically the same

Point-free approach

In the point-free approach, such questions don’t make sense:

Is 1/3 a point in the set Q?
Does Q contain a point?

This is because Q is not an actual set, just a formal object.

With a little work, all the usual a.e. pointwise convergence theorems can
be expressed in a point-free form.
(Technically, these formulations use almost-uniform convergence in place
of a.e. convergence, but that is how the results are constructively proved
anyway.)
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Three approaches to measurable objects: why they are basically the same

Moral equivalence of the three approaches

Theorem (Constructive)

1 Every Brouwer/Schnorr measurable set is Martin-Löf measurable.
2 Every Martin-Löf measurable set is point-free measurable.
3 Every point-free measurable set is a.e. equal to some Brouwer/Schnorr

measurable set.

The same holds for integrable/measurable functions and almost-uniform
convergence.

Therefore, for many theorems, including the a.e. pointwise convergence
theorems, it doesn’t matter which definitions we use.
In particular, it doesn’t hurt to use the Brouwer/Schnorr versions.
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Connecting randomness and analysis

Connecting randomness and analysis
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Connecting randomness and analysis

Our questions

Questions

1 What does a constructive/computable result say about randomness?
2 What does a randomness result say about constructivity/computability?
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Connecting randomness and analysis

A coincidence? I think not.

Constructive theorems

1 Lebesgue differentiation theorem
2 Ergodic theorem for ergodic systems
3 Strong law of large numbers

Theorems satisfying Schnorr randomness

1 Lebesgue differentiation theorem
2 Ergodic theorem for ergodic systems
3 Strong law of large numbers
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Connecting randomness and analysis

Constructive⇒ Holds for Schnorr random

“Metatheorem”
Given a constructive almost-everywhere theorem (of say Bishop or Demuth):
(1) For all objects A, for almost-every x, it holds that P(A,x).

Then the following (classically) holds:
(2) For all computable A and all Schnorr random x, it holds that P(A,x).

“Proof.”
A constructive proof of (1) must provide an algorithm constructing the
(Schnorr) null set N from a code for A. �
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Connecting randomness and analysis

Example: The ergodic theorem

The ergodic theorem says for integrable f and measure preserving T,

Anf (x) := 1
n
∑

k<n f (Tn(x)) converges as n→∞ for a.e. x.

T is ergodic if g◦T = g implies g is a.e. constant.

Theorem (Gács/Hoyrup/Rojas)

1 x is Schnorr random iff
2 Anf (x) converges for all “computable” f and “computable”, ergodic T.

“ 1 implies 2 ” also follows from known constructive results.
Is ergodic the best “reasonable” assumption on the system? No:

Theorem (Spitters)

TFAE (constructively) for a fixed f and T:
Anf converges almost-uniformly.
The set of T-invariant functions {g ∈ L1 : g◦T = g} is a located set in L1.
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Connecting randomness and analysis

Martin-Löf randomness and non-constructive results

Theorems characterizing Martin-Löf randomness

1 Lebesgue theorem on the differentiability of bounded variation functions
2 Ergodic theorem
3 Doob’s martingale convergence theorem

None of these theorems are constructive.
They all implicitly compute the halting problem.
They are also equivalent to ACA0 in reverse math.

However, some constructivity can be recovered.
For example, Bishop [1967] has results which imply that Lebesgue’s
theorem holds for Martin-Löf randoms and computable b.v. functions.
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Comments on the point-free approach

Comments on the point-free approach
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Comments on the point-free approach

Point-free topologies

Two approaches to working with the topological space R:

Treat R as a set of points with a topological structure.
Treat R as a lattice of open sets.

The second approach has advantages in constructive math.

Two approaches to working with the measure space ([0,1],µ).

Treat [0,1] as a set of points with a measure structure.
Treat ([0,1],µ) as a lattice of measurable sets (mod null).

This lattice is a locale, i.e. it satisfies the axioms of a topology: has top
and bottom and is closed under finite intersections and arbitrary unions.
This measurable locale is an example of a point-free topology.
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Comments on the point-free approach

Randomness is “pointless”

A point is truely random if it is in every measure one set.
The measurable locale is the (point-free) space of true randoms.
(This is Alex Simpson’s idea, except he used the locale of Jordan-Peano
measurable sets mod null.)
Bas Spitters: “Randomness is pointless.”

Forcing over the measurable locale produces Solovay randoms.
A Solovay random is in every measure one set in the ground model.

Effectively forcing over the Boolean algebra of effectively measurable sets
mod null produces Schnorr randoms.
A Schnorr random is in every effective/constructive measure one set.
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Closing Thoughts

Closing Thoughts
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Closing Thoughts

Summary

The early constructivists adopted the Brouwer/Schnorr definition of null
sets because it has better properties.
If an a.e. theorem is constructively provable, then it holds for Schnorr
randomness.
While there are Brouwer/Schnorr, Martin-Löf, and point-free approaches
to measure theory, they are—for the most part—constructively
inter-interpretable.
The point-free approaches are elegant and allow one to avoid fiddly
questions, however they are still connected to Schnorr randomness via
effective versions of Solovay forcing.
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Closing Thoughts

Thank You!

These slides will be available on my webpage:

http://www.personal.psu.edu/jmr71/

Or just Google™me, “Jason Rute”.

P.S. This Autumn, I will be applying for jobs.
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