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Randomness deficiency

Definition (Martin-Lof)

Let U = (U;)icw be a universal ML-test. The randomness deficiency

-

relative to U of an X € MLR is

RD;;(X) = min{i : X ¢ U;}.

The idea is that the smaller RD;(X) is, the more random X is according
to U.
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Layerwise computability

Definition (Hoyrup & Rojas)

Let I/ be a universal ML-test. A function F: 2% — 2¢ is Zj—layerwise
computable if there is a Turing functional ® such that

B(X,i) = F(X)

whenever X € 2¥\ UY;.

The idea is that F'(X) is uniformly computable on MLR if you're also
given advice about the randomness deficiency of X.

This is a helpful notion for studying effectivity in Brownian motion,

Birkhoff's ergodic theorem, convergence of random variables, etc. See also
Pauly’'s talk at CCR.
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Weihrauch reducibility (suppressing representations)

"F: Cw¥ = w”" means that F' is a partial multi-valued function.

Definition (Weihrauch)

For F,G: Cw* = w®, F' <w G if there are Turing functionals ® and ¥
such that

U (h, G(®(h))) € F(h)

for all h € dom(F).

That is, U(h, k) € F'(h) whenever k € G(®(h)).

e & takes F-inputs h and processes them into G-inputs ®(h).
e U takes h and G(®(h))-outputs k and computes F'(h)-outputs.
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A few notes on Weihrauch reducibility

Weihrauch reducibility generalizes to functions F': CX == ), where X
and ) are, e.g., complete separable metric spaces. In this situation, we
view elements of w*“ as coding elements of X and ).

However, today we mostly care about 2* and w, so we ignore the details of
such codings.

(View 2% as a subspace of w*, and identify n € w with {n}.)

F <w G strengthens to F' <,y G, where now ¥(G(®(h))) C F(h) for all
h € dom(F).

In strong Weihrauch reducibility, the decoding function ¥ does not have
explicit access to h.
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A Weihrauch version of computing a function on MLR
uniformly in the input’s randomness deficiency
Definition

Let U be a universal ML-test. Let LAY;;: MLR = w be defined by

LAY 2(X) = {i : X & Us}.

F <sw LAYy, also expresses a sense in which F' is computable on MLR if
you're given the ability to determine a random’s randomness deficiency.
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What is this talk about?

How do ZJ—Iayerwise computability and Weihrauch reducibility to
LAY,; compare?
e Both express similar ideas: uniform computability on MLR given
randomness deficiencies.
e The pre-processing power of @ in the definition of Weihrauch
reducibility makes Weihrauch reducibility to LAY,; more powerful

than ﬁ—layerwise computability.

Does the choice of I/ matter?
e For Z]—Iayerwise computability it matters, but you have to make a
purposefully stupid choice of .
e For Weihrauch reducibility to LAY ;, it doesn’t matter.

Paul Shafer — UGent Universality, optimality, and RD June, 18 2015 7 /24



Purposefully stupid = universal but not optimal

Definition
Let 2/ be an ML-test.
o U is universal if ;. U; = 2\ MLR.

o Uis optimal if for every ML-test V there is a ¢ such that
Vi(Vige CU;).

Every optimal ML-test is universal, and there are optimal ML-tests.

There are universal ML-tests that are not optimal.
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A nice difference between universal and optimal ML-tests

Theorem (Merkle, Mihailovi¢, Slaman)

There are a universal ML-test I{ and a left-r.e. real o such that

Theorem (Miyabe)
No optimal ML-test can witness the previous theorem. J
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Optimal tests and layerwise computability

Recall that F' is ﬁ-layerwise computable if there is a Turing functional ¢
such that F(X) = ®(X, i) whenever X € 2¥\ U;.

Hoyrup & Rojas only defined Zj—layerwise computability for optimal tests.

It is easy to check that if o and V are universal ML-tests and frw—owis
a recursive function such that

Vi(Vf(i) CU;)
then every ﬁ—layerwise computable function is L?—Iayerwise computable.

Hence optimal ML-tests give the most general notion of layerwise
computability.

How badly non-optimal can a universal ML-test be?
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Badly non-optimal universal ML-tests

If 24 and V are universal ML-tests, must there be an f: w — w such that
Vi(Vyay € U;)? (That is, must it be that Vi3j(V; C U;)?)

If there is such an f, how hard is it to compute? (If there is an f, then
there is an f <1 0".)

Theorem (H&S)
There are universal ML-tests U and V such that FiVi(V; € U;).

Theorem (H&S)
There is a universal ML-test U such that
o if V is any ML-test, then ¥i3j(V; C U;) and

o ifVis any optimal ML-test and f: w — w is such that
VZ(Vf(Z) C Zx{l), then f >T 0",
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Layerwise computability depends on the test

By the previous slide, there are universal ML-tests for which no
computable function (or any function) can translate between the layerings.
Theorem (H&S)

There are universal ML-tests U and V and a function F such that F is
U-layerwise computable but not V-layerwise computable.

o A C 2% is effectively measurable if there are uniformly r.e. sequences
of open sets O, C such that 2 \C;i CACO;and AN(O;NC;) <27°
for all ¢ € w.

e (Hoyrup & Rojas) For an optimal ML-test U, asetis effectively
measurable if and only if its characteristic function is Z]—Iayerwise
computable.

e There is an effectively measurable set .4 and universal ML-test V such
that the characteristic function of A is not f)—layerwise computable.
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Weihrauch reducibility to LAY does not depend on the test

Let 2/ be a universal ML-test. Recall that for X € MLR
o LAY ;(X) = {i: X ¢ U;} and

e RD;(X) =min{i: X ¢ U;}.

Theorem (H&S)

LAY ; =w RDy; for every pair of universal ML-tests U and V.

(This theorem and many others concerning the Weihrauch degrees was
proved independently by Pauly, Davie, and Fouché.)

So we may unambiguously refer to this Weihrauch degree as ‘LAY’
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LAY; =y RD;;

Theorem (H&S)

LAY ,; =w RDy; for every pair of universal ML-tests U and V.

The interesting direction is RDj; <w LAY ;.

Plan: Given X € MLR, inflate RD;;(X) until it witnesses RD;(X).
e ®(X) copies X while searching for sg such that X € V4.

e If found, ®(X) takes its current output o, searches for 7 such that
[077] € (;<, Ui, and appends T to its output.
e & resumes copying X while searching for sy such that X € Vi, ....
e In the end, ®(X) € MLR is such that
i <RDy(X) = ¢(X) € VZ-7RDH(X).
e Let U(X, k) be the least i such that X ¢V, .
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What about strong Weihrauch reducibility?

In the proof of RDy; <w LAY;, the decoding function ¥ (X, k) made
essential use of X.

The theorem cannot be improved to <qw.

However, the LAY ; are all equivalent up to strong Weihrauch degree.

Proposition (H&S)

Let U and V be universal ML-tests. Then
° RD‘-;‘ fsW LAYL—{* and
o LAY,; =sw LAY

Question: Must RDZZ =W RD]}—?
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Layerwise computability vs. Weihrauch reducibility to LAY

Let Z/ be a universal ML-test.

It is easy to check that if F'is Zj—layerwise computable, then
F | MLR <w LAY.

An obvious question: Is RD;; a ZZ—Iayerwise computable function?

Theorem (H&S) J

Let U be a universal ML-test. Then RD,; is not Z]—/ayerwise computable.

We know that RD; <w LAY, so RD,; is an example of a function that is
Weihrauch reducible to LAY but not Zj—layerwise computable.
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Layerwise semi-decidability

Definition (Hoyrup & Rojas)
Let ¢ be a universal ML-test.

e AC2%is Z]—Iayerwise semi-decidable if there is a uniformly r.e.
sequence of open sets O such that

VilAN (29 \U) = O; 0 (22 \ Uy))].

o A C 2% is U-layerwise decidable if A and 2 \ A are U-layerwise
semi-decidable.

Easy to check that A is L?—Iayerwise decidable if and only if its
characteristic function is U-layerwise computable.
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Layerwise semi-decidability vs. Weihrauch reducibility

The characteristic function of every layerwise semi-decidable set
Weihrauch reduces to LAY:

Theorem (H&S)

IfU is a universal ML-test and A C 2% s ZZ-/ayerwise semi-decidable, then
xA [ MLR <y LAY.

Proposition (Hoyrup & Rojas)

Let U be a imiversal ML-test, and let A be ﬁ—layerwise semi-decidable.
Then A is U-layerwise decidable if and only if A(A) is recursive.

So there are lots of functions that Weihrauch reduce to LAY but are not
layerwise computable.
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Exact layerwise computability

We have seen that RD,; = LAY,; for any universal ML-test /.

Thus up to Weihrauch degree, producing RD,;(.X) for an X € MLR is
equivalent to producing an upper bound for RD,;(X).

What if we strengthen the definition of Ij—layerwise computability to
require the exact value of RD;(X)?

Definition

Let U/ be a universal ML-test. A function F: 2% — 2¢ is exactly
U-layerwise computable if there is a Turing functional ® such that
®(X,RD;(X)) = F(X) for every X € MLR.
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Exact layerwise computability vs. layerwise computability

Let Z/ be a universal ML-test.

Clearly RD,; is exactly ﬁ—layerwise computable.

But we have seen that RD; is not Z]—Iayerwise computable.

So there are functions that are exactly layerwise computable but not
layerwise computable.

Also, exact layerwise computability depends on the test.

Theorem (H&S)

There are universal ML-tests U and V and a function F such that F is
exactly U-layerwise computable but not exactly V-layerwise computable.
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Exact layerwise computability vs. Weihrauch reducibility

Let Z/ be a universal ML-test.

If F: 2 — 2“ is exactly U-layerwise computable, then
F | MLR <w LAY.

This is essentially because RD;; =w LAY.

Still, there are functions Weihrauch reducible to LAY that are not exactly
U-layerwise computable.

Theorem (H&S)

Let U be a universal ML-test. Then there is a function F <w LAY that is
not exactly U-layerwise computable.
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Algebraic operations in the Weihrauch degrees

Let f and g be partial multi-valued functions. Define
o (fxg)(x,y) = f(x) x g(y) and

o (fxg)(x) =max{foogo: (fo<w f)A (9 <w g)} (always exists by
Brattka & Pauly).

Additionally, consider the following two functions:

o For A C w¥, idy4 is the identity function but with domain restricted
to A.

e Cn: Cw"¥ = w is the multi-valued function with domain
{f €w’: IVE(f(k) #n+1)}
defined by
Cn(f) = w\{n:3k(f(k) #n+1)}.
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Algebraic properties of LAY in the Weihrauch degrees

Theorem (H&S; Pauly, Davie, and Fouché)
LAY % LAY =w LAY J

It follows that LAY x LAY =y LAY as well. This can be improved to
LAY x LAY =.w LAY.

Theorem (H&S)
e LAY <;w Cx

e Cy £w LAY (also Pauly, Davie, and Fouché)
e LAY =w Cy x idyrr (also Pauly, Davie, and Fouché)
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Danke!

Thank you for coming to my talk!
Do you have a question about it?

Paul Shafer — UGent Universality, optimality, and RD June, 18 2015 24 / 24



