Universality, optimality, and randomness deficiency

Paul Shafer Universiteit Gent Paul.Shafer@UGent.be http://cage.ugent.be/~pshafer/

Varieties of Algorithmic Information Heidelberg, Germany June 18, 2015

Joint work with Rupert Hölzl.

Paul Shafer - UGent

Randomness deficiency

Definition (Martin-Löf)

Let $\vec{\mathcal{U}} = (\mathcal{U}_i)_{i \in \omega}$ be a universal ML-test. The randomness deficiency relative to $\vec{\mathcal{U}}$ of an $X \in MLR$ is

 $\mathsf{RD}_{\mathcal{U}}(X) = \min\{i : X \notin \mathcal{U}_i\}.$

The idea is that the smaller $\operatorname{RD}_{\vec{\mathcal{U}}}(X)$ is, the more random X is according to $\vec{\mathcal{U}}$.

Definition (Hoyrup & Rojas)

Let $\vec{\mathcal{U}}$ be a universal ML-test. A function $F: 2^{\omega} \to 2^{\omega}$ is $\vec{\mathcal{U}}$ -layerwise computable if there is a Turing functional Φ such that

$$\Phi(X,i) = F(X)$$

whenever $X \in 2^{\omega} \setminus \mathcal{U}_i$.

The idea is that F(X) is uniformly computable on MLR if you're also given advice about the randomness deficiency of X.

This is a helpful notion for studying effectivity in Brownian motion, Birkhoff's ergodic theorem, convergence of random variables, etc. See also Pauly's talk at CCR.

Weihrauch reducibility (suppressing representations)

" $F \colon \subseteq \omega^{\omega} \rightrightarrows \omega^{\omega}$ " means that F is a partial multi-valued function.

Definition (Weihrauch)

For $F,G: \subseteq \omega^{\omega} \rightrightarrows \omega^{\omega}$, $F \leq_W G$ if there are Turing functionals Φ and Ψ such that

 $\Psi(h,G(\Phi(h)))\subseteq F(h)$

for all $h \in \operatorname{dom}(F)$.

That is, $\Psi(h,k) \in F(h)$ whenever $k \in G(\Phi(h))$.

- Φ takes *F*-inputs *h* and processes them into *G*-inputs $\Phi(h)$.
- Ψ takes h and $G(\Phi(h))$ -outputs k and computes F(h)-outputs.

A few notes on Weihrauch reducibility

Weihrauch reducibility generalizes to functions $F : \subseteq \mathcal{X} \rightrightarrows \mathcal{Y}$, where \mathcal{X} and \mathcal{Y} are, e.g., complete separable metric spaces. In this situation, we view elements of ω^{ω} as coding elements of \mathcal{X} and \mathcal{Y} .

However, today we mostly care about 2^ω and $\omega,$ so we ignore the details of such codings.

(View 2^{ω} as a subspace of ω^{ω} , and identify $n \in \omega$ with $\{n\}$.)

 $F \leq_{W} G$ strengthens to $F \leq_{sW} G$, where now $\Psi(G(\Phi(h))) \subseteq F(h)$ for all $h \in \operatorname{dom}(F)$.

In strong Weihrauch reducibility, the decoding function Ψ does not have explicit access to h.

A Weihrauch version of computing a function on MLR uniformly in the input's randomness deficiency

Definition

Let $\vec{\mathcal{U}}$ be a universal ML-test. Let $LAY_{\vec{\mathcal{U}}} : MLR \Rightarrow \omega$ be defined by $LAY_{\vec{\mathcal{U}}}(X) = \{i : X \notin \mathcal{U}_i\}.$

 $F \leq_{W} LAY_{\mathcal{U}}$ also expresses a sense in which F is computable on MLR if you're given the ability to determine a random's randomness deficiency.

What is this talk about?

How do $\vec{\mathcal{U}}\text{-layerwise}$ computability and Weihrauch reducibility to LAY $_{\vec{\mathcal{U}}}$ compare?

- Both express similar ideas: uniform computability on MLR given randomness deficiencies.
- The pre-processing power of Φ in the definition of Weihrauch reducibility makes Weihrauch reducibility to LAY_{\vec{u}} more powerful than \vec{u} -layerwise computability.

Does the choice of $\vec{\mathcal{U}}$ matter?

- For $\vec{\mathcal{U}}$ -layerwise computability it matters, but you have to make a purposefully stupid choice of $\vec{\mathcal{U}}$.
- For Weihrauch reducibility to LAY_{$1\vec{l}$}, it doesn't matter.

Purposefully stupid = universal but not optimal

Definition

Let $\vec{\mathcal{U}}$ be an ML-test.

- $\vec{\mathcal{U}}$ is universal if $\bigcap_{i \in \omega} \mathcal{U}_i = 2^{\omega} \setminus MLR.$
- $\vec{\mathcal{U}}$ is optimal if for every ML-test $\vec{\mathcal{V}}$ there is a c such that $\forall i(\mathcal{V}_{i+c} \subseteq \mathcal{U}_i)$.

Every optimal ML-test is universal, and there are optimal ML-tests.

There are universal ML-tests that are not optimal.

A nice difference between universal and optimal ML-tests

Theorem (Merkle, Mihailović, Slaman)

There are a universal ML-test $\vec{\mathcal{U}}$ and a left-r.e. real α such that

 $\forall i(\lambda(\mathcal{U}_i) = 2^{-i}\alpha).$

Theorem (Miyabe)

No **optimal** *ML*-test can witness the previous theorem.

Optimal tests and layerwise computability

Recall that F is $\vec{\mathcal{U}}$ -layerwise computable if there is a Turing functional Φ such that $F(X) = \Phi(X, i)$ whenever $X \in 2^{\omega} \setminus \mathcal{U}_i$.

Hoyrup & Rojas only defined $\vec{\mathcal{U}}$ -layerwise computability for **optimal** tests.

It is easy to check that if $\vec{\mathcal{U}}$ and $\vec{\mathcal{V}}$ are universal ML-tests and $f: \omega \to \omega$ is a recursive function such that

$$\forall i(\mathcal{V}_{f(i)} \subseteq \mathcal{U}_i)$$

then every $\vec{\mathcal{V}}$ -layerwise computable function is $\vec{\mathcal{U}}$ -layerwise computable.

Hence optimal ML-tests give the most general notion of layerwise computability.

How badly non-optimal can a universal ML-test be?

Badly non-optimal universal ML-tests

If $\vec{\mathcal{U}}$ and $\vec{\mathcal{V}}$ are universal ML-tests, must there be an $f: \omega \to \omega$ such that $\forall i (\mathcal{V}_{f(i)} \subseteq \mathcal{U}_i)$? (That is, must it be that $\forall i \exists j (\mathcal{V}_j \subseteq \mathcal{U}_i)$?)

If there is such an f, how hard is it to compute? (If there is an f, then there is an $f\leq_{\rm T} 0''.)$

Theorem (H&S)

There are universal ML-tests $\vec{\mathcal{U}}$ and $\vec{\mathcal{V}}$ such that $\exists i \forall j (\mathcal{V}_j \nsubseteq \mathcal{U}_i)$.

Theorem (H&S)

There is a universal ML-test $\vec{\mathcal{U}}$ such that

• if $\vec{\mathcal{V}}$ is any ML-test, then $\forall i \exists j (\mathcal{V}_j \subseteq \mathcal{U}_i)$ and

• if $\vec{\mathcal{V}}$ is any optimal ML-test and $f: \omega \to \omega$ is such that $\forall i(\mathcal{V}_{f(i)} \subseteq \mathcal{U}_i)$, then $f \geq_{\mathrm{T}} 0''$.

Layerwise computability depends on the test

By the previous slide, there are universal ML-tests for which no computable function (or any function) can translate between the layerings.

Theorem (H&S)

There are universal ML-tests $\vec{\mathcal{U}}$ and $\vec{\mathcal{V}}$ and a function F such that F is $\vec{\mathcal{U}}$ -layerwise computable but **not** $\vec{\mathcal{V}}$ -layerwise computable.

- $\mathcal{A} \subseteq 2^{\omega}$ is effectively measurable if there are uniformly r.e. sequences of open sets $\vec{\mathcal{O}}$, $\vec{\mathcal{C}}$ such that $2^{\omega} \setminus \mathcal{C}_i \subseteq \mathcal{A} \subseteq \mathcal{O}_i$ and $\lambda(\mathcal{O}_i \cap \mathcal{C}_i) \leq 2^{-i}$ for all $i \in \omega$.
- (Hoyrup & Rojas) For an optimal ML-test $\vec{\mathcal{U}}$, a set is effectively measurable if and only if its characteristic function is $\vec{\mathcal{U}}$ -layerwise computable.
- There is an effectively measurable set \mathcal{A} and universal ML-test $\vec{\mathcal{V}}$ such that the characteristic function of \mathcal{A} is **not** $\vec{\mathcal{V}}$ -layerwise computable.

Paul Shafer - UGent

Weihrauch reducibility to LAY does not depend on the test

Let $\vec{\mathcal{U}}$ be a universal ML-test. Recall that for $X \in MLR$

- $LAY_{\vec{\mathcal{U}}}(X) = \{i : X \notin \mathcal{U}_i\}$ and
- $\mathsf{RD}_{\vec{\mathcal{U}}}(X) = \min\{i : X \notin \mathcal{U}_i\}.$

Theorem (H&S)

 $LAY_{\vec{\mathcal{U}}} \equiv_{W} RD_{\vec{\mathcal{V}}}$ for every pair of universal ML-tests $\vec{\mathcal{U}}$ and $\vec{\mathcal{V}}$.

(This theorem and many others concerning the Weihrauch degrees was proved independently by Pauly, Davie, and Fouché.)

So we may unambiguously refer to this Weihrauch degree as 'LAY.'

$\mathsf{LAY}_{\vec{\mathcal{U}}} \equiv_{\mathrm{W}} \mathsf{RD}_{\vec{\mathcal{V}}}$

Theorem (H&S)

 $LAY_{\vec{\mathcal{U}}} \equiv_{W} RD_{\vec{\mathcal{V}}}$ for every pair of universal ML-tests $\vec{\mathcal{U}}$ and $\vec{\mathcal{V}}$.

The interesting direction is $RD_{\vec{\mathcal{V}}} \leq_W LAY_{\vec{\mathcal{U}}}$.

Plan: Given $X \in MLR$, inflate $RD_{\vec{u}}(X)$ until it witnesses $RD_{\vec{v}}(X)$.

- $\Phi(X)$ copies X while searching for s_0 such that $X \in \mathcal{V}_{0,s_0}$.
- If found, $\Phi(X)$ takes its current output σ , searches for τ such that $[\sigma^{-}\tau] \subseteq \bigcap_{i \leq s} \mathcal{U}_i$, and appends τ to its output.
- Φ resumes copying X while searching for s_1 such that $X \in \mathcal{V}_{1,s_1} \dots$
- In the end, $\Phi(X) \in MLR$ is such that $i < \mathsf{RD}_{\vec{\mathcal{V}}}(X) \Rightarrow \Phi(X) \in \mathcal{V}_{i,\mathsf{RD}_{\vec{\mathcal{U}}}(X)}.$
- Let $\Psi(X,k)$ be the least i such that $X \notin \mathcal{V}_{i,k}$.

What about strong Weihrauch reducibility?

In the proof of $\mathsf{RD}_{\vec{\mathcal{V}}} \leq_{\mathrm{W}} \mathsf{LAY}_{\vec{\mathcal{U}}}$, the decoding function $\Psi(X,k)$ made essential use of X.

The theorem cannot be improved to \leq_{sW} .

However, the LAY₁₁ are all equivalent up to strong Weihrauch degree.

Proposition (H&S)

Let $\vec{\mathcal{U}}$ and $\vec{\mathcal{V}}$ be universal ML-tests. Then

- $RD_{\vec{\mathcal{V}}} \not\leq_{sW} LAY_{\vec{\mathcal{U}}}$ and
- $LAY_{\vec{\mathcal{U}}} \equiv_{sW} LAY_{\vec{\mathcal{V}}}$.

Question: Must $RD_{\vec{\mathcal{U}}} \equiv_{sW} RD_{\vec{\mathcal{V}}}$?

Layerwise computability vs. Weihrauch reducibility to LAY

Let $\vec{\mathcal{U}}$ be a universal ML-test.

It is easy to check that if F is $\vec{\mathcal{U}}$ -layerwise computable, then $F \upharpoonright MLR \leq_W LAY$.

An obvious question: Is $RD_{\vec{u}}$ a $\vec{\mathcal{U}}$ -layerwise computable function?

Theorem (H&S) Let $\vec{\mathcal{U}}$ be a universal ML-test. Then $RD_{\vec{\mathcal{U}}}$ is **not** $\vec{\mathcal{U}}$ -layerwise computable.

We know that $RD_{\vec{\mathcal{U}}} \leq_W LAY$, so $RD_{\vec{\mathcal{U}}}$ is an example of a function that is Weihrauch reducible to LAY but not $\vec{\mathcal{U}}$ -layerwise computable.

Layerwise semi-decidability

Definition (Hoyrup & Rojas)

Let $\vec{\mathcal{U}}$ be a universal ML-test.

• $\mathcal{A} \subseteq 2^{\omega}$ is $\vec{\mathcal{U}}$ -layerwise semi-decidable if there is a uniformly r.e. sequence of open sets $\vec{\mathcal{O}}$ such that

$$\forall i [\mathcal{A} \cap (2^{\omega} \setminus \mathcal{U}_i) = \mathcal{O}_i \cap (2^{\omega} \setminus \mathcal{U}_i)].$$

A ⊆ 2^ω is *U*-layerwise decidable if *A* and 2^ω \ *A* are *U*-layerwise semi-decidable.

Easy to check that \mathcal{A} is $\vec{\mathcal{U}}$ -layerwise decidable if and only if its characteristic function is $\vec{\mathcal{U}}$ -layerwise computable.

Layerwise semi-decidability vs. Weihrauch reducibility

The characteristic function of every layerwise semi-decidable set Weihrauch reduces to LAY:

Theorem (H&S)

If $\vec{\mathcal{U}}$ is a universal ML-test and $\mathcal{A} \subseteq 2^{\omega}$ is $\vec{\mathcal{U}}$ -layerwise semi-decidable, then $\chi_{\mathcal{A}} \upharpoonright MLR \leq_{W} LAY$.

Proposition (Hoyrup & Rojas)

Let $\vec{\mathcal{U}}$ be a universal ML-test, and let \mathcal{A} be $\vec{\mathcal{U}}$ -layerwise semi-decidable. Then \mathcal{A} is $\vec{\mathcal{U}}$ -layerwise decidable if and only if $\lambda(\mathcal{A})$ is recursive.

So there are lots of functions that Weihrauch reduce to LAY but are not layerwise computable.

Exact layerwise computability

We have seen that $RD_{\vec{\mathcal{U}}} \equiv_W LAY_{\vec{\mathcal{U}}}$ for any universal ML-test $\vec{\mathcal{U}}$.

Thus up to Weihrauch degree, producing $RD_{\vec{\mathcal{U}}}(X)$ for an $X \in MLR$ is equivalent to producing an upper bound for $RD_{\vec{\mathcal{U}}}(X)$.

What if we strengthen the definition of $\vec{\mathcal{U}}$ -layerwise computability to require the exact value of $\mathsf{RD}_{\vec{\mathcal{U}}}(X)$?

Definition

Let $\vec{\mathcal{U}}$ be a universal ML-test. A function $F: 2^{\omega} \to 2^{\omega}$ is exactly $\vec{\mathcal{U}}$ -layerwise computable if there is a Turing functional Φ such that $\Phi(X, \mathsf{RD}_{\vec{\mathcal{U}}}(X)) = F(X)$ for every $X \in \mathrm{MLR}$.

Exact layerwise computability vs. layerwise computability

Let $\vec{\mathcal{U}}$ be a universal ML-test.

Clearly $RD_{\vec{\mathcal{U}}}$ is exactly $\vec{\mathcal{U}}$ -layerwise computable.

But we have seen that $RD_{\vec{l}\vec{l}}$ is not $\vec{\mathcal{U}}$ -layerwise computable.

So there are functions that are exactly layerwise computable but not layerwise computable.

Also, exact layerwise computability depends on the test.

Theorem (H&S)

There are universal ML-tests $\vec{\mathcal{U}}$ and $\vec{\mathcal{V}}$ and a function F such that F is exactly $\vec{\mathcal{U}}$ -layerwise computable but **not** exactly $\vec{\mathcal{V}}$ -layerwise computable.

Exact layerwise computability vs. Weihrauch reducibility

Let $\vec{\mathcal{U}}$ be a universal ML-test.

If $F: 2^{\omega} \to 2^{\omega}$ is exactly \mathcal{U} -layerwise computable, then $F \upharpoonright MLR \leq_W LAY$.

This is essentially because $RD_{1\vec{\lambda}} \equiv_W LAY$.

Still, there are functions Weihrauch reducible to LAY that are not exactly $\vec{\mathcal{U}}\text{-}layerwise$ computable.

Theorem (H&S)

Let $\vec{\mathcal{U}}$ be a universal ML-test. Then there is a function $F \leq_{\mathrm{W}} \mathsf{LAY}$ that is not exactly $\vec{\mathcal{U}}$ -layerwise computable.

Algebraic operations in the Weihrauch degrees

Let f and g be partial multi-valued functions. Define

•
$$(f \times g)(x, y) = f(x) \times g(y)$$
 and

• $(f * g)(x) = \max\{f_0 \circ g_0 : (f_0 \leq_W f) \land (g_0 \leq_W g)\}$ (always exists by Brattka & Pauly).

Additionally, consider the following two functions:

- For A ⊆ ω^ω, id_A is the identity function but with domain restricted to A.
- $C_{\mathbb{N}}\colon\subseteq\omega^{\omega}\rightrightarrows\omega$ is the multi-valued function with domain

$$\{f\in\omega^\omega:\exists n\forall k(f(k)\neq n+1)\}$$

defined by

$$C_{\mathbb{N}}(f) = \omega \setminus \{n : \exists k (f(k) \neq n+1)\}.$$

Algebraic properties of LAY in the Weihrauch degrees

Theorem (H&S; Pauly, Davie, and Fouché) LAY * LAY \equiv_W LAY

It follows that LAY \times LAY \equiv_W LAY as well. This can be improved to LAY \times LAY \equiv_{sW} LAY.

Theorem (H&S)

- LAY $\leq_{\mathrm{sW}} \mathrm{C}_{\mathbb{N}}$
- $\mathrm{C}_{\mathbb{N}} \nleq_{\mathrm{W}}$ LAY (also Pauly, Davie, and Fouché)
- LAY $\equiv_W \mathrm{C}_{\mathbb{N}} \times \mathrm{id}_{\mathrm{MLR}}$ (also Pauly, Davie, and Fouché)

Thank you for coming to my talk! Do you have a question about it?