The original approach

Exact Constructive Dimension

Logarithmic Scale

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Constructive dimension and Hausdorff dimension: the case of exact dimension

Ludwig Staiger

Martin-Luther-Universität Halle-Wittenberg

VAI, Heidelberg, June 2015

The original approach

Exact Constructive Dimension

Logarithmic Scale

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Outline

Preliminaries

Notation Gambling strategies and super-martingales HAUSDORFF dimension Constructive dimension and KOLMOGOROV complexity

2 The original approach

HAUSDORFF '18

3 Exact Constructive Dimension

Lower bounds

Upper bounds

Sets of exact constructive dimension

4 Logarithmic Scale

Functions of the logarithmic scale

The original approach

Exact Constructive Dimension

Logarithmic Scale

Notation: Strings and languages

Finite Alphabet $X = \{0, \dots, 2-1\}$, cardinality $|\{0, 1\}| = 2$

Finite strings (words) $w = x_1 \cdots x_n \in \{0, 1\}^*, x_i \in \{0, 1\}$

Length |w| = n

Languages $V, W \subseteq \{0, 1\}^*$

Infinite strings (ω -words) $\xi = x_1 \cdots x_n \cdots \in \{0, 1\}^{\omega}$

Prefixes of infinite strings $\xi[0..n] \in \{0, 1\}^*$, $|\xi[0..n]| = n$

 ω -Languages $F \subseteq \{0, 1\}^{\omega}$

◆ロト ◆御 ト ◆臣 ト ◆臣 ト → 臣 → の々で

The original approach

Exact Constructive Dimension

Logarithmic Scale

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

$\{0,1\}^{\omega}$ as CANTOR space

Metric: $\rho(\eta, \xi) := \inf \{2^{-|w|} : w \in \operatorname{pref}(\eta) \cap \operatorname{pref}(\xi)\}$ Balls: $w \cdot \{0, 1\}^{\omega} = \{\eta : w \in \operatorname{pref}(\eta)\}$ Diameter: diam $w \cdot \{0, 1\}^{\omega} = 2^{-|w|}$ diam $F = \inf\{2^{-|w|} : F \subseteq w \cdot \{0, 1\}^{\omega}\}$ Open sets: $W \cdot \{0, 1\}^{\omega} = \bigcup_{w \in W} w \cdot \{0, 1\}^{\omega}$ Closure: $\mathscr{C}(F) = \{\xi : \operatorname{pref}(\xi) \subseteq \operatorname{pref}(F)\}$

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

Gambling strategies

Our model:

- Playing head-and-tails against a binary sequence $\xi \in \{0, 1\}^{\omega}$
- Gambling strategy $\Gamma : \{0, 1\}^* \rightarrow [0, 1]$ (bet on outcome 1)
- yields a (super-)martingale \mathcal{V}_{Γ} : $\{0,1\}^* \rightarrow \mathbb{R}_+$
- $\mathcal{V}_{\Gamma}(\xi[0..n])$ is the capital after the *n* the round

Fact (super-martingale property)

$$\mathcal{V}_{\Gamma}(w) \geq \sum_{x \in \{0,1\}} \frac{1}{2} \cdot \mathcal{V}_{\Gamma}(wx)$$

The original approach

Exact Constructive Dimension

Logarithmic Scale

Gambling strategies: martingale \mathcal{V}

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへ⊙

The original approach

Exact Constructive Dimension

Logarithmic Scale

How much can you win: Order functions [SCHNORR'71]

Definition (Order function *f* and gauge function *h*)

 $f: \mathbb{N} \to \mathbb{N}$ increasing $h: (0, \infty) \to (0, \infty)$ right continuous and increasing

gauge functionorder function $h: (0, \infty) \rightarrow (0, \infty)$ $f: \mathbb{N} \rightarrow \mathbb{N}$

 $h(2^{-n}) = 2^{-n} \cdot f(n) \quad \longleftrightarrow \quad f(n)$

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ト ○ 臣 - の � @

The original approach

Exact Constructive Dimension

Logarithmic Scale

How much can you win: Order functions [SCHNORR'71]

Definition (Order function *f* and gauge function *h*)

- $f: \mathbb{N} \to \mathbb{N}$ increasing
- $h: (0,\infty) \rightarrow (0,\infty)$ right continuous and increasing

gauge function		order function	
$h:(0,\infty)\to(0,\infty)$		$f:\mathbb{N}\to\mathbb{N}$	
$h(2^{-n})=2^{-n}\cdot f(n)$	\longleftrightarrow	<i>f</i> (<i>n</i>)	

Definition (success set)

$$S_{c,h}[\mathcal{V}] := \left\{ \xi : \xi \in \{0,1\}^{\omega} \land \limsup_{n \to \infty} \frac{\mathcal{V}(\xi[0..n])}{2^n \cdot h(2^{-n})} \ge c \right\} , c \in (0,\infty) \cup \{\infty\}$$

・

The original approach

Exact Constructive Dimension

Logarithmic Scale

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

"Classical" HAUSDORFF dimension

HAUSDORFF dimension of $F \subseteq \{0, 1\}^{\omega}$

The original approach

Exact Constructive Dimension

Logarithmic Scale

Relation to HAUSDORFF dimension

Let
$$S_{c,\alpha}[\mathcal{V}] := \left\{ \xi : \limsup_{n \to \infty} \frac{\mathcal{V}(\xi[0..n])}{2^n \cdot 2^{-\alpha \cdot n}} \ge c \right\}$$
 for $c \in (0,\infty) \cup \{\infty\}$

The original approach

Exact Constructive Dimension

Logarithmic Scale

Relation to HAUSDORFF dimension

Let
$$S_{c,\alpha}[\mathcal{V}] := \left\{ \xi : \limsup_{n \to \infty} \frac{\mathcal{V}(\xi[0..n])}{2^n \cdot 2^{-\alpha \cdot n}} \ge c \right\}$$
 for $c \in (0,\infty) \cup \{\infty\}$

Lemma

For every super-martingale \mathcal{V} :

 $\dim_{\mathrm{H}} S_{c,\alpha}[\mathcal{V}] \leq \alpha$

Theorem ([LUTZ'03])

Let $F \subseteq \{0, 1\}^{\omega}$. Then

$$\dim_{\mathrm{H}} F < \alpha \to \exists \mathcal{V} (F \subseteq S_{\infty,\alpha}[\mathcal{V}]) \to \dim_{\mathrm{H}} F \leq \alpha.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ − つへぐ

The original approach

Exact Constructive Dimension

Logarithmic Scale

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ▶ ● ○ ○ ○ ○

Semi-computability

Definition (Left computable)

A (partial) mapping $\phi : \{0, 1\}^* \to \mathbb{R}$ is called **computably approximable** from below (*left computable*) : \iff

$$\{(w,q): w \in \operatorname{dom} \phi \land q \in \mathbb{Q} \land q < \phi(w)\}$$

is computably enumerable.

Similar: computably approximable from above (right computable)

The original approach

Exact Constructive Dimension

Logarithmic Scale

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Universal super-martingale

Definition (Continuous (or: Cylindrical) semi-measure)

 $\mu(w) \ge \mu(w0) + \mu(w1)$

Theorem (LEVIN'70)

There is a universal left computable continuous semi-measure **M** on {0, 1}*, that is, **M** is left computable and for every left computable continuous semi-measure μ there is a constant c_{μ} such that $\mu(w) \leq c_{\mu} \cdot \mathbf{M}(w)$ for all $w \in \{0, 1\}^*$.

The original approach

Exact Constructive Dimension

Logarithmic Scale

Universal super-martingale

Definition (Continuous (or: Cylindrical) semi-measure)

 $\mu(w) \ge \mu(w0) + \mu(w1)$

Theorem (LEVIN'70)

There is a universal left computable continuous semi-measure **M** on {0, 1}*, that is, **M** is left computable and for every left computable continuous semi-measure μ there is a constant c_{μ} such that $\mu(w) \leq c_{\mu} \cdot \mathbf{M}(w)$ for all $w \in \{0, 1\}^*$.

Theorem (LEVIN'70, SCHNORR'71)

There is a universal left computable super-martingale \mathcal{U} , e.g. $\mathcal{U}(w) := 2^{|w|} \cdot \mathbf{M}(w).$

The original approach

Exact Constructive Dimension

Logarithmic Scale

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Constructive dimension [LUTZ'03]

Constructive dimension tries to measure for $\xi \in \{0, 1\}^{\omega}$ the exponent α for which

 $\mathscr{U}(\xi[0..n]) \approx 2^{\alpha \cdot n + o(n)}.$

The original approach

Exact Constructive Dimension

Logarithmic Scale

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

Constructive dimension [LUTZ'03]

Constructive dimension tries to measure for $\xi \in \{0, 1\}^{\omega}$ the exponent α for which

 $\mathscr{U}(\xi[0..n]) \approx 2^{\alpha \cdot n + o(n)}.$

 $\begin{array}{lll} \text{More precisely,} \quad \mathscr{U}\big(\xi[0..n]\big) & \geq_{i.o.} & 2^{\alpha'\cdot n} \quad \text{for } \alpha' < \alpha \text{ , and} \\ & \mathscr{U}\big(\xi[0..n]\big) & \leq_{a.e.} & 2^{\alpha''\cdot n} \quad \text{for } \alpha'' > \alpha \text{ ,} \end{array}$

The original approach

Exact Constructive Dimension

Logarithmic Scale

Constructive dimension [LUTZ'03]

Constructive dimension tries to measure for $\xi \in \{0, 1\}^{\omega}$ the exponent α for which

 $\mathscr{U}(\xi[0..n]) \approx 2^{\alpha \cdot n + o(n)}.$

 $\begin{array}{lll} \text{More precisely,} \quad \mathscr{U}\big(\xi[0..n]\big) & \geq_{i.o.} & 2^{\alpha'\cdot n} \quad \text{for } \alpha' < \alpha \text{ , and} \\ & \mathscr{U}\big(\xi[0..n]\big) & \leq_{a.e.} & 2^{\alpha''\cdot n} \quad \text{for } \alpha'' > \alpha \text{ ,} \end{array}$

that is [LEVIN'70, LUTZ'03], **Definition** (Constructive dimension of ξ)

$$\underline{\kappa}(\xi) := 1 - \alpha = \liminf_{n \to \infty} \frac{-\log \mathbf{M}(\xi[0..n])}{n}$$

Corollary (LUTZ'03)

Let $F \subseteq \{0,1\}^{\omega}$. Then $\sup\{\underline{\kappa}(\xi) : \xi \in F\} = \inf\{\alpha : F \subseteq S_{\infty,\alpha}[\mathcal{U}]\}.$

The original approach

Exact Constructive Dimension

Logarithmic Scale

KOLMOGOROV complexity – USPENSKY-SHEN-pentagon

a priori complexity

 $KA(w) := -\log M(w)$

The original approach

Exact Constructive Dimension

Logarithmic Scale

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

KOLMOGOROV complexity – USPENSKY-SHEN-pentagon

a priori complexity

 $KA(w) := -\log M(w)$

The original approach

Exact Constructive Dimension

Logarithmic Scale

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The original approach [HAUSDORFF '18]

Classical

$$\mathbb{L}_{\alpha}(F) := \lim_{n \to \infty} \inf \left\{ \sum_{v \in V} (2^{-|v|})^{\alpha} : F \subseteq \bigcup_{v \in V} v \cdot \{0, 1\}^{\omega} \wedge \min_{v \in V} |v| \ge n \right\}$$

The original approach

Exact Constructive Dimension

Logarithmic Scale

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The original approach [HAUSDORFF '18]

Classical

$$\mathbb{L}_{\alpha}(F) := \lim_{n \to \infty} \inf \left\{ \sum_{v \in V} (2^{-|v|})^{\alpha} : F \subseteq \bigcup_{v \in V} v \cdot \{0, 1\}^{\omega} \wedge \min_{v \in V} |v| \ge n \right\}$$

Original

$$\mathscr{H}^{h}(F) := \lim_{n \to \infty} \inf \left\{ \sum_{v \in V} h(2^{-|v|}) : F \subseteq \bigcup_{v \in V} v \cdot \{0, 1\}^{\omega} \land \min_{v \in V} |v| \ge n \right\}$$

The original approach

Exact Constructive Dimension

Logarithmic Scale

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

The original approach [HAUSDORFF '18]

Classical

$$\mathbb{L}_{\alpha}(F) := \lim_{n \to \infty} \inf \left\{ \sum_{v \in V} (2^{-|v|})^{\alpha} : F \subseteq \bigcup_{v \in V} v \cdot \{0, 1\}^{\omega} \wedge \min_{v \in V} |v| \ge n \right\}$$

Original

$$\mathscr{H}^{h}(F) := \lim_{n \to \infty} \inf \left\{ \sum_{v \in V} h(2^{-|v|}) : F \subseteq \bigcup_{v \in V} v \cdot \{0, 1\}^{\omega} \wedge \min_{v \in V} |v| \ge n \right\}$$

where *h* is a gauge function, that is, $h: (0,\infty) \rightarrow (0,\infty)$ is right continuous and non-decreasing,

The gauge functions for the "classical" HAUSDORFF dimension are $h_{\alpha}(t) = t^{\alpha}$.

The original approach

Exact Constructive Dimension

Logarithmic Scale

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Exact HAUSDORFF dimension I

Lemma ([HAUSDORFF'18])

Let $h, h' : \mathbb{R}_+ \to \mathbb{R}_+$ be gauge functions and let $F \subseteq \{0, 1\}^{\omega}$.

The original approach

Exact Constructive Dimension

Logarithmic Scale

Exact HAUSDORFF dimension I

Lemma ([HAUSDORFF'18])

Let $h, h' : \mathbb{R}_+ \to \mathbb{R}_+$ be gauge functions and let $F \subseteq \{0, 1\}^{\omega}$.

Quasi-ordering of gauge functions (Speed of converging to 0)

Largest h(t) = t

Ordering h(t') < h(t) if and only if $\lim_{t\to 0} \frac{h(t)}{h'(t)} = 0$, e.g. the exponential functions $h(t) = t^{\alpha}, 0 \le \alpha \le 1$ Smallest h(t) = const. > 0

The original approach

Exact Constructive Dimension

Logarithmic Scale

Exact HAUSDORFF dimension II

Definition (Exact HAUSDORFF dimension)

We refer to a gauge function *h* as an exact Hausdorff dimension function for $F \subseteq \{0, 1\}^{\omega}$ provided

$$\mathcal{H}^{h'}(F) = \begin{cases} \infty, & \text{if } \lim_{t \to 0} \frac{h(t)}{h'(t)} = 0 \text{, and} \\ 0, & \text{if } \lim_{t \to 0} \frac{h'(t)}{h(t)} = 0. \end{cases}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ 釣�?

The original approach

Exact Constructive Dimension

Logarithmic Scale

Martingale characterisation of exact HAUSDORFF dimension

Definition (Success set)

$$S_{c,h}[\mathcal{V}] := \left\{ \xi : \limsup_{n \to \infty} \frac{\mathcal{V}(\xi[0..n])}{2^n \cdot h(2^{-n})} \ge c \right\} \text{ for } c \in (0,\infty) \cup \{\infty\}$$

Theorem

h is an exact Hausdorff dimension function for $F \subseteq \{0, 1\}^{\omega}$: \iff

- for all gauge functions h' with $\lim_{t\to 0} \frac{h'(t)}{h(t)} = 0$ there is a (super-)martingale \mathcal{V} such that $F \subseteq S_{\infty,h'}[\mathcal{V}]$, and
- **2** $F \not\subseteq S_{\infty,h''}[\mathcal{V}]$ for all (super-)martingales \mathcal{V} and all gauge functions h'' with $\lim_{t \to 0} \frac{h(t)}{h''(t)} = 0$.

The original approach

Exact Constructive Dimension

Logarithmic Scale

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Exact constructive dimension

Analogously to the martingale characterisation of the Hausdorff dimension we set:

Definition

We refer to a gauge function *h* as an **exact constructive dimension** function for $F \subseteq \{0, 1\}^{\omega}$ provided

• $F \subseteq S_{\infty,h'}[\mathcal{U}]$ for all gauge functions h' with $\lim_{t\to 0} \frac{h'(t)}{h(t)} = 0$, and

② $F \not\subseteq S_{\infty,h''}[\mathscr{U}]$ for all gauge functions h'' with $\lim_{t\to 0} \frac{h(t)}{h''(t)} = 0$.

The original approach

Exact Constructive Dimension

Logarithmic Scale

Exact constructive dimension

Analogously to the martingale characterisation of the Hausdorff dimension we set:

Definition

We refer to a gauge function *h* as an **exact constructive dimension** function for $F \subseteq \{0, 1\}^{\omega}$ provided

• $F \subseteq S_{\infty,h'}[\mathcal{U}]$ for all gauge functions h' with $\lim_{t\to 0} \frac{h'(t)}{h(t)} = 0$, and

② $F \not\subseteq S_{\infty,h''}[\mathscr{U}]$ for all gauge functions h'' with $\lim_{t\to 0} \frac{h(t)}{h''(t)} = 0$.

Theorem (Exact dimension for $\{\xi\}$)

The function h_{ξ} defined by $h_{\xi}(2^{-n}) := 2^{-n} \cdot \mathscr{U}(\xi[0..n]) = \mathbf{M}(\xi[0..n])$ is an exact constructive dimension function for the set $\{\xi\}$.

The original approach

Exact Constructive Dimension

Logarithmic Scale

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三■ ・ ��や

RYABKO's result: Large sets contain complex ω -words

Theorem (RYABKO'84, "classical case")

For $\alpha \in [0, 1]$ it holds $\alpha = \dim_{\mathrm{H}} \{\xi : \xi \in \{0, 1\}^{\omega} \land \underline{\kappa}(\xi) \leq \alpha \}.$

Theorem (St'93, "classical case")

If
$$F \subseteq \{0, 1\}^{\omega}$$
 and $\mathbb{L}_{\alpha}(F) > 0$ then there is a $\xi \in F$ such that
$$\liminf_{n \to \infty} \frac{\mathrm{KS}(\xi[0..n])}{n} \ge_{\mathrm{a.e.}} \alpha \cdot n - (1 + \varepsilon) \log n.$$

The original approach

Exact Constructive Dimension

Logarithmic Scale

RYABKO's result: Large sets contain complex ω -words

Theorem (RYABKO'84, "classical case")

For $\alpha \in [0, 1]$ it holds $\alpha = \dim_{\mathrm{H}} \{\xi : \xi \in \{0, 1\}^{\omega} \land \underline{\kappa}(\xi) \leq \alpha \}.$

Theorem (St'93, "classical case")

If
$$F \subseteq \{0, 1\}^{\omega}$$
 and $\mathbb{L}_{\alpha}(F) > 0$ then there is a $\xi \in F$ such that
$$\liminf_{n \to \infty} \frac{\mathrm{KS}(\xi[0..n])}{n} \ge_{\mathrm{a.e.}} \alpha \cdot n - (1 + \varepsilon) \log n.$$

Theorem (Lower KA-bound, Mielke'09)

Let $F \subseteq \{0,1\}^{\omega}$, h be a gauge function and $\mathcal{H}^{h}(F) > 0$. Then for every c > 0 with $\mathcal{H}^{h}(F) > c \cdot \mathbf{M}(e)$ there is a $\xi \in F$ such that $\mathrm{KA}(\xi[0..n]) \ge_{\mathrm{a.e.}} -\log h(2^{-n}) + c$.

The original approach

Exact Constructive Dimension

Logarithmic Scale

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Complexity bounds

Fact

$$\{\xi: \exists c(\mathrm{KA}(\xi[0..n]) \leq_{\mathrm{i.o.}} -\log h(2^{-n}) + c)\} = \bigcup_{c' \in (0,\infty)} S_{c',h}[\mathscr{U}]$$

Corollary (to Lower KA-bound)

Let h, h' be gauge functions such that $\lim_{t\to 0} \frac{h'(t)}{h(t)} = 0$. Then

$$\{\xi : \exists c (\mathrm{KA}(\xi[0..n]) \leq_{\mathrm{i.o.}} -\log h(2^{-n}) + c) \} \subseteq S_{\infty,h'}[\mathcal{U}], \text{ and }$$

2
$$\mathscr{H}^{h'}(\{\xi : \exists c(\mathrm{KA}(\xi[0..n]) \leq_{\mathrm{i.o.}} -\log h(2^{-n}) + c)\}) = 0.$$

The original approach

Exact Constructive Dimension

Logarithmic Scale

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Exact dimension function: an example

Example

$$F := \left\{ x_1 x_2 \cdots x_i \cdots \mid x_i \in \{0, 1\} \land \forall j (x_{2^j} = 0) \right\}$$

F has classical Hausdorff dimension $\dim_{\mathrm{H}} F = 1$ but does not contain any random sequence.

The original approach

Exact Constructive Dimension

Logarithmic Scale

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Exact dimension function: an example

Example

$$F := \left\{ x_1 x_2 \cdots x_i \cdots \mid x_i \in \{0, 1\} \land \forall j (x_{2^j} = 0) \right\}$$

F has classical Hausdorff dimension $\dim_{\mathrm{H}} F = 1$ but does not contain any random sequence.

The exact Hausdorff dimension is

$$\dim_{\mathrm{H}} F = \left[h(t) = t \cdot \log \frac{1}{t}\right].$$

Observe $-\log h(2^{-n}) = n - \log n$.

The original approach

Exact Constructive Dimension

Logarithmic Scale

Upper bounds: "Classical case" [St'98]

Definition (Σ_2 -sets)

A subset $F \subseteq \{0, 1\}^{\omega}$ is Σ_2 -definable if there is a computable set $W \subseteq \mathbb{N} \times \{0, 1\}^*$ such that $\xi \in F \longleftrightarrow \exists m \forall n((m, \xi[0..n]) \in W).$

Theorem

If $F \subseteq \{0, 1\}^{\omega}$ is Σ_2 -definable and $\alpha \ge \dim_H F$ is a right computable real then there is a computable $V \subseteq \{0, 1\}^*$ such that $F \subseteq V^{\delta}$ and $\sum_{v \in V} 2^{-|v|} < \infty$.

Corollary

If $F_i \subseteq \{0, 1\}^{\omega}$, $i \in \mathbb{N}$, are Σ_2 -definable then $\underline{\kappa}(\xi) \leq \dim \bigcup_{i \in \mathbb{N}} F_i$ for $\xi \in \bigcup_{i \in \mathbb{N}} F_i$.

The original approach

Exact Constructive Dimension

Logarithmic Scale

Upper bound on prefix complexity KP

Lemma (REIMANN'04)

Let $F \subseteq \{0,1\}^{\omega}$ and h be a gauge function. Then $\mathscr{H}^{h}(F) = 0$ if and only if there is a $V \subseteq \{0,1\}^{*}$ such that $F \subseteq V^{\delta} := \{\xi : |\mathbf{pref}(\xi) \cap V| = \infty\}$ and $\sum_{v \in V} h(2^{-|v|}) < \infty$.

Theorem

If $F \subseteq \{0,1\}^{\omega}$ is Σ_2 -definable and h is a right computable gauge function such that $\mathscr{H}^h(F) = 0$ then there are a non-decreasing function $\overline{h}: \{2^{-i}: i \in \mathbb{N}\} \to \mathbb{Q}$ and a computable $V \subseteq \{0,1\}^*$ such that

$$f(2^{-i}) \ge h(2^{-i}) \text{ for } i \in \mathbb{N},$$

2
$$\sum_{v \in V} \overline{h}(2^{-|v|}) < \infty$$
 and $F \subseteq V^{\delta}$, and

③ KP(ξ [0..*n*]) ≤_{i.o.} −log_{*r*} *h*(*r*^{-*n*}) + O(1) for all ξ ∈ *F*.

The original approach

Exact Constructive Dimension

Logarithmic Scale

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Upper bounds: Computable dimension

Theorem ("Classical case", St'98)

If $F \subseteq \{0, 1\}^{\omega}$ is Σ_2 -definable and $\alpha \ge \dim_H F$ is a right computable real then there is a computable martingale \mathcal{V} such that $F \subseteq S_{\infty,\alpha}[\mathcal{V}]$.

Theorem

For every Σ_2 -definable $F \subseteq \{0, 1\}^{\omega}$ and every computable gauge function $h : \mathbb{Q} \to \mathbb{R}$ such that $\mathscr{H}^h(F) = 0$ there is a computable martingale \mathcal{V} such that $F \subseteq \bigcup_{c>0} S_{c,h}[\mathcal{V}]$.

The original approach

Exact Constructive Dimension

Logarithmic Scale

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

Dilution functions

Modulus function: $g: \mathbb{N} \to \mathbb{N}$ strictly monotone, that is, g(n+1) > g(n)

The original approach

Exact Constructive Dimension

Logarithmic Scale

Dilution functions

Modulus function: $g: \mathbb{N} \to \mathbb{N}$ strictly monotone, that is, g(n+1) > g(n)

Example [Dilution function with
$$|\varphi(w)| = g(|w|)$$
]
 $\varphi : \{0,1\}^* \rightarrow \{0,1\}^*$
 $\varphi(e) := 0^{g(0)} \text{ and}$
 $\varphi(wx) := \varphi(w) \cdot x \cdot 0^{g(n+1)-g(n)-1}$

Definition (Dilution function)

For every $v \in \mathbf{pref}(\varphi(\{0,1\}^*))$ there are $w_v \in \{0,1\}^*$ and $x_v \in \{0,1\}$ such that

$$\varphi(w_v) \sqsubset v \sqsubseteq \varphi(w_v \cdot x_v) \quad \land \quad \forall y \big(y \in \{0,1\} \land y \neq x_v \to v \not\sqsubseteq \varphi(w_v \cdot y) \big)$$

The original approach

Exact Constructive Dimension

Logarithmic Scale

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

HAUSDORFF measure of diluted sets

Theorem

Let $g : \mathbb{N} \to \mathbb{N}$ be a strictly increasing function, φ a corresponding dilution function and $h : (0, \infty) \to (0, \infty)$ be a gauge function. Then

Corollary

If
$$c \cdot 2^{-n} \leq_{\text{a.e.}} h(2^{-g(n)}) \leq c' \cdot 2^{-n}$$
 then $c \leq \mathscr{H}^h(\overline{\varphi}(\{0,1\}^{\omega})) \leq c'$.

The original approach

Exact Constructive Dimension

Logarithmic Scale

Dilution: an existence condition for modulus functions

Lemma (Sufficient condition)

If a gauge function h is upwardly convex (or \cap -convex) on some interval $(0, \varepsilon)$ and $\lim_{t\to 0} h(t) = 0$ then there is an $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$ there is an $m \in \mathbb{N}$ satisfying

$$2^{-n} < h(2^{-m}) \le 2^{-n+1}.$$

In particular, there are a modulus function $g : \mathbb{N} \to \mathbb{N}$ and constants c_0, c_1 such that

$$0 < c_0 \le \liminf_{n \to \infty} \frac{h(2^{-g(n)})}{2^{-n}} \le \limsup_{n \to \infty} \frac{h(2^{-g(n)})}{2^{-n}} \le c_1$$

If, moreover, $h : \mathbb{Q} \to \mathbb{R}$ is a computable gauge function then also $g : \mathbb{N} \to \mathbb{N}$ can be chosen to be computable.

The original approach

Exact Constructive Dimension

Logarithmic Scale

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Exact complexity bound

Theorem (St'09)

Let $\varphi : \{0,1\}^* \to \{0,1\}^*$ be a computable dilution function with modulus function $g : \mathbb{N} \to \mathbb{N}$. Then

 $\left|\operatorname{KA}(\overline{\varphi}(\xi)[0..g(n)]) - \operatorname{KA}(\xi[0..n])\right| \le O(1) \text{ for all } \xi \in \{0,1\}^{\omega} \text{ and all } n \in \mathbb{N} .$

The original approach

Exact Constructive Dimension

Logarithmic Scale

Exact complexity bound

Theorem (St'09)

Let $\varphi : \{0,1\}^* \to \{0,1\}^*$ be a computable dilution function with modulus function $g : \mathbb{N} \to \mathbb{N}$. Then $|\mathrm{KA}(\overline{\varphi}(\xi)[0..g(n)]) - \mathrm{KA}(\xi[0..n])| \le O(1)$ for all $\xi \in \{0,1\}^{\omega}$ and all $n \in \mathbb{N}$.

Theorem

Let $h : \mathbb{Q} \to \mathbb{R}$ be a computable gauge function such that for all $n \ge n_0$ there is an $m \in \mathbb{N}$ with $2^{-n} < h(2^{-m}) \le 2^{-n+1}$. Then

• $\mathscr{H}^{h}(\{\xi : \exists c(\mathrm{KA}(\xi[0..n]) \leq_{\mathrm{a.e.}} -\log h(2^{-n}) + c)\}) > 0, and$

A h is an exact dimension function for the sets
 $\{\xi : \exists c(KA(\xi[0..n]) ≤_{i.o.} -\log h(2^{-n}) + c)\}$ and
 $\{\zeta : \exists c(KA(\zeta[0..n]) ≤_{a.e.} -\log h(2^{-n}) + c)\}.$

The original approach

Exact Constructive Dimension

Logarithmic Scale

Functions of the Logarithmic Scale

Definition (Functions of the logarithmic scale)

$$h_{(p_0,...,p_k)}(t) = t^{p_0} \cdot \prod_{i=1}^k (\log^i \frac{1}{t})^{-p_i}$$

where
$$\log^{t} t := \max\{1, \underbrace{\log_2 \ldots \log_2 t}_{t}\}$$
.

i times

The original approach

Exact Constructive Dimension

Logarithmic Scale

Functions of the Logarithmic Scale

Definition (Functions of the logarithmic scale)

$$h_{(p_0,...,p_k)}(t) = t^{p_0} \cdot \prod_{i=1}^k (\log^i \frac{1}{t})^{-p_i}$$

where
$$\log^{i} t := \max\{1, \underbrace{\log_2 \ldots \log_2 t}_{t}\}$$
.

i times

Definition (Generalised HAUSDORFF Dimension)

$$\dim_{\mathrm{H}}^{(k)} F := \sup_{<_{\mathrm{lex}}} \{ (p_0, \dots, p_k) : \mathcal{H}^{h_{(p_0, \dots, p_k)}}(F) = \infty \}$$

= $\inf_{<_{\mathrm{lex}}} \{ (p_0, \dots, p_k) : \mathcal{H}^{h_{(p_0, \dots, p_k)}}(F) = 0 \}$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ 釣�?

Preliminaries 0000000000	The original approach	Exact Constructive Dimension	Logarithmic Scale
Upper bound			

Let $h_{(p_0,...,p_k)}$, k > 0, be a function of the logarithmic scale. We define $\beta_h := \log h_{(p_0,...,p_{k-1})}$. Observe that

$$\beta_h(2^{-n}) = p_0 \cdot n - \sum_{i=1}^{k-1} p_i \cdot \log^i n \text{ and} \\ \log h_{(p_0,\dots,p_k)}(2^{-n}) = p_0 \cdot n - \sum_{i=1}^{k-1} p_i \cdot \log^i n - p_k \cdot \log^k n$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Preliminaries	The original approach	Exact Constructive Dimension	Logarithmic Scale
Upper bound			

Let $h_{(p_0,...,p_k)}$, k > 0, be a function of the logarithmic scale. We define $\beta_h := \log h_{(p_0,...,p_{k-1})}$. Observe that

$$\beta_h(2^{-n}) = p_0 \cdot n - \sum_{i=1}^{k-1} p_i \cdot \log^i n \text{ and} \\ \log h_{(p_0,\dots,p_k)}(2^{-n}) = p_0 \cdot n - \sum_{i=1}^{k-1} p_i \cdot \log^i n - p_k \cdot \log^k n$$

Theorem (MIELKE'10)

Let $k \ge 0$, $(p_0, ..., p_k)$ be a (k + 1)-tuple and $h_{(p_0,...,p_k)}$ be a function of the logarithmic scale. Then

$$\dim_{\mathrm{H}}^{(k)}\left\{\xi:\xi\in\{0,1\}^{\omega}\wedge\liminf_{n\to\infty}\frac{\mathrm{KA}(\xi[0..n])-\beta_{h}(2^{-n})}{\log^{k}n}$$

The original approach

Exact Constructive Dimension

Logarithmic Scale

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Lower bound

Theorem (MIELKE'10,St)

Let k > 0, $(p_0, ..., p_k)$ be a (k + 1)-tuple where $p_0, ..., p_{k-1}$ are computable reals. Then

$$\dim_{\mathrm{H}}^{(k)} \left\{ \xi : \xi \in \{0, 1\}^{\omega} \land \liminf_{n \to \infty} \frac{\mathrm{KA}(\xi[0..n]) - \beta_h(2^{-n})}{\log^k n} < p_k \right\} = (p_0, \dots, p_k)$$

for $h = h_{(p_0, \dots, p_k)}$.

The original approach

Exact Constructive Dimension

Logarithmic Scale

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Why our bounds don't match

"Inexact" case: approximation of real by computable reals

For every real number α and every $\varepsilon > 0$ there are computable reals α_0, α_1 such that $|\alpha_1 - \alpha_0| < \varepsilon$ and $\alpha_0 \le \alpha \le \alpha_1$.

The original approach

Exact Constructive Dimension

Logarithmic Scale

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Why our bounds don't match

"Inexact" case: approximation of real by computable reals

For every real number α and every $\varepsilon > 0$ there are computable reals α_0, α_1 such that $|\alpha_1 - \alpha_0| < \varepsilon$ and $\alpha_0 \le \alpha \le \alpha_1$.

Example: logarithmic scale

If there is a computable function $h: \mathbb{Q} \to \mathbb{R}$ such that

$$t^{p_0} \le h(t) \le t^{p_0} \cdot \log \frac{1}{t}$$
 for $t \in (0, 1) \cap \mathbb{Q}$

then p_0 is computable.

The original approach

Exact Constructive Dimension

Logarithmic Scale

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Counter-example

RYABKO's theorem is independent of the complexity. That is, we can replace KA by other complexities, e.g. by plain KOLMOGOROV complexity KS.

What about our theorem?

The original approach

Exact Constructive Dimension

Logarithmic Scale

Counter-example

RYABKO's theorem is independent of the complexity. That is, we can replace KA by other complexities, e.g. by plain KOLMOGOROV complexity KS.

What about our theorem?

Example [Oscillation of the plain complexity KS]

It is known that $KS(\xi[0..n]) \leq_{i.o.} n - \log n + O(1)$. Thus

$$\left\{\xi: \xi \in \{0,1\}^{\omega} \land \liminf_{n \to \infty} \frac{\mathrm{KS}(\xi[0..n]) - n}{\log n} < \varepsilon - 1\right\} = \{0,1\}^{\omega} \text{ for all } \varepsilon > 0$$

but

$$\dim_{\mathrm{H}}^{(1)}\left\{\xi:\xi\in\{0,1\}^{\omega}\wedge\liminf_{n\to\infty}\frac{\mathrm{KS}(\xi[0..n])-n}{\log n}<\varepsilon-1\right\}=1>_{\mathrm{lex}}(1,\varepsilon-1).$$

▲ロト▲園ト▲目ト▲目ト 目 のへで