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Notation: Strings and languages

Finite Alphabet X = {0, . . . ,2−1}, cardinality |{0,1}| = 2

Finite strings (words) w = x1 · · ·xn ∈ {0,1}∗, xi ∈ {0,1}

Length |w | = n

Languages V ,W ⊆ {0,1}∗

Infinite strings (ω-words) ξ= x1 · · ·xn · · · ∈ {0,1}ω

Prefixes of infinite strings ξ[0..n] ∈ {0,1}∗,
∣∣ξ[0..n]

∣∣= n

ω-Languages F ⊆ {0,1}ω
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{0,1}ω as CANTOR space

Metric: ρ(η,ξ) := inf {2−|w | :w ∈ pref(η)∩pref(ξ)}

Balls: w · {0,1}ω = {η :w ∈ pref(η)}

Diameter: diamw · {0,1}ω = 2−|w |

diamF = inf{2−|w | : F ⊆w · {0,1}ω}

Open sets: W · {0,1}ω =⋃
w∈W w · {0,1}ω

Closure: C (F)= {ξ : pref(ξ)⊆ pref(F)}
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Gambling strategies

Our model:

• Playing head-and-tails against a binary sequence ξ ∈ {0,1}ω

• Gambling strategy Γ : {0,1}∗ → [0,1] (bet on outcome 1)

• yields a (super-)martingale VΓ : {0,1}∗ →R+
• VΓ(ξ[0..n]) is the capital after the n the round

Fact (super-martingale property)

VΓ(w)≥ ∑
x∈{0,1}

1
2 ·VΓ(wx)
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Gambling strategies: martingale V
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How much can you win: Order functions [SCHNORR’71]

Definition (Order function f and gauge function h)

f :N→N increasing
h : (0,∞)→ (0,∞) right continuous and increasing

gauge function order function

h : (0,∞)→ (0,∞) f :N→N

h(2−n)= 2−n · f (n) ←→ f (n)

Definition (success set)

Sc,h[V ] :=
{
ξ : ξ ∈ {0,1}ω∧ limsup

n→∞
V (ξ[0..n])

2n ·h(2−n)
≥ c

}
, c ∈ (0,∞)∪ {∞}
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“Classical” HAUSDORFF dimension

HAUSDORFF dimension of F ⊆ {0,1}ω

Lα(F) := lim
n→∞ inf

{ ∑
v∈V

2−α·|v | : F ⊆ ⋃
v∈V

v · {0,1}ω∧min
v∈V

|v | ≥ n
}

6

-
r

Lα(F)

α

0 1
α0 = dimH F

Lα0(F)

∞

0
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Relation to HAUSDORFF dimension

Let Sc,α[V ] :=
{
ξ : limsup

n→∞
V (ξ[0..n])

2n ·2−α·n ≥ c
}

for c ∈ (0,∞)∪ {∞}

Lemma

For every super-martingale V :
dimH Sc,α[V ]≤α

Theorem ([LUTZ’03])

Let F ⊆ {0,1}ω. Then

dimH F <α → ∃V (F ⊆S∞,α[V ]) → dimH F ≤α .
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Semi-computability

Definition (Left computable)

A (partial) mapping φ : {0,1}∗ →R is called computably approximable
from below ( left computable ) :⇐⇒{

(w ,q) :w ∈ domφ∧q ∈Q∧q <φ(w)
}

is computably enumerable.
Similar: computably approximable from above ( right computable )
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Universal super-martingale

Definition (Continuous (or: Cylindrical) semi-measure)

µ(w)≥µ(w0)+µ(w1)

Theorem (LEVIN’70)

There is a universal left computable continuous semi-measure M
on {0,1}∗, that is, M is left computable and for every left computable
continuous semi-measure µ there is a constant cµ such that

µ(w)≤ cµ ·M(w) for all w ∈ {0,1}∗ .

Theorem (LEVIN’70, SCHNORR’71)

There is a universal left computable super-martingale U , e.g.
U (w) := 2|w | ·M(w).
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Constructive dimension [LUTZ’03]

Constructive dimension tries to measure for ξ ∈ {0,1}ω the exponent α
for which

U (ξ[0..n])≈ 2α·n+o(n).

More precisely, U (ξ[0..n]) ≥i .o. 2α
′·n for α′ <α , and

U (ξ[0..n]) ≤a.e. 2α
′′·n for α′′ >α ,

that is [LEVIN’70, LUTZ’03],
Definition (Constructive dimension of ξ)

κ(ξ) := 1−α= liminf
n→∞

− logM(ξ[0..n])

n

Corollary (LUTZ’03)

Let F ⊆ {0,1}ω. Then
sup{κ(ξ) : ξ ∈ F } = inf

{
α : F ⊆S∞,α[U ]

}
.
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KOLMOGOROV complexity – USPENSKY-SHEN-pentagon

a priori complexity KA(w) :=− logM(w)

KP (prefix complexity)
�
�
�
�
��(plain or simple

complexity)
KS

Km (monotone complexity)

KA (a priori complexity)
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The original approach [HAUSDORFF ’18]

Classical

Lα(F) := lim
n→∞ inf

{ ∑
v∈V

(2−|v |)α : F ⊆ ⋃
v∈V

v · {0,1}ω∧min
v∈V

|v | ≥ n
}

Original

H h(F) := lim
n→∞ inf

{ ∑
v∈V

h(2−|v |) : F ⊆ ⋃
v∈V

v · {0,1}ω∧min
v∈V

|v | ≥ n
}

where h is a gauge function, that is,
h : (0,∞)→ (0,∞) is right continuous and non-decreasing,

The gauge functions for the “classical” HAUSDORFF dimension are
hα(t)= tα.
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Exact HAUSDORFF dimension I

Lemma ([HAUSDORFF’18])

Let h,h′ :R+ →R+ be gauge functions and let F ⊆ {0,1}ω.

1 If h(t)≤ c ·h′(t) then H h(F)≤ c ·H h′
(F).

2 If lim
t→0

h(t)

h′(t)
= 0 then H h′

(F)<∞ implies H h(F)= 0,

and H h(F)> 0 implies H h′
(F)=∞ .

Quasi-ordering of gauge functions (Speed of converging to 0)

Largest h(t)= t

Ordering h(t ′)≺ h(t) if and only if limt→0
h(t)
h′(t) = 0,

e.g. the exponential functions h(t)= tα,0≤α≤ 1

Smallest h(t)= const . > 0



Preliminaries The original approach Exact Constructive Dimension Logarithmic Scale

Exact HAUSDORFF dimension I

Lemma ([HAUSDORFF’18])

Let h,h′ :R+ →R+ be gauge functions and let F ⊆ {0,1}ω.

1 If h(t)≤ c ·h′(t) then H h(F)≤ c ·H h′
(F).

2 If lim
t→0

h(t)

h′(t)
= 0 then H h′

(F)<∞ implies H h(F)= 0,

and H h(F)> 0 implies H h′
(F)=∞ .

Quasi-ordering of gauge functions (Speed of converging to 0)

Largest h(t)= t

Ordering h(t ′)≺ h(t) if and only if limt→0
h(t)
h′(t) = 0,

e.g. the exponential functions h(t)= tα,0≤α≤ 1

Smallest h(t)= const . > 0



Preliminaries The original approach Exact Constructive Dimension Logarithmic Scale

Exact HAUSDORFF dimension II

6

-

q
H h(F)

h(t)

h(t)= const . h(t)= tdimH F

H dimH(F)

∞

0

Definition (Exact HAUSDORFF dimension)

We refer to a gauge function h as an exact Hausdorff dimension
function for F ⊆ {0,1}ω provided

H h′
(F)=

 ∞ , if limt→0
h(t)
h′(t) = 0 , and

0 , if limt→0
h′(t)
h(t) = 0 .
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Martingale characterisation of exact HAUSDORFF dimension

Definition (Success set)

Sc,h[V ] :=
{
ξ : limsup

n→∞
V (ξ[0..n])

2n ·h(2−n)
≥ c

}
for c ∈ (0,∞)∪ {∞}

Theorem

h is an exact Hausdorff dimension function for F ⊆ {0,1}ω :⇐⇒
1 for all gauge functions h′ with lim

t→0

h′(t)
h(t) = 0 there is a

(super-)martingale V such that F ⊆S∞,h′ [V ], and

2 F 6⊆S∞,h′′ [V ] for all (super-)martingales V and all gauge functions

h′′ with lim
t→0

h(t)
h′′(t) = 0.
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Exact constructive dimension

Analogously to the martingale characterisation of the Hausdorff
dimension we set:

Definition

We refer to a gauge function h as an exact constructive dimension
function for F ⊆ {0,1}ω provided

1 F ⊆S∞,h′ [U ] for all gauge functions h′ with limt→0
h′(t)
h(t) = 0, and

2 F 6⊆S∞,h′′ [U ] for all gauge functions h′′ with limt→0
h(t)
h′′(t) = 0.

Theorem (Exact dimension for {ξ})

The function hξ defined by hξ(2−n) := 2−n ·U (ξ[0..n])=M(ξ[0..n]) is an
exact constructive dimension function for the set {ξ}.



Preliminaries The original approach Exact Constructive Dimension Logarithmic Scale

Exact constructive dimension

Analogously to the martingale characterisation of the Hausdorff
dimension we set:

Definition

We refer to a gauge function h as an exact constructive dimension
function for F ⊆ {0,1}ω provided

1 F ⊆S∞,h′ [U ] for all gauge functions h′ with limt→0
h′(t)
h(t) = 0, and

2 F 6⊆S∞,h′′ [U ] for all gauge functions h′′ with limt→0
h(t)
h′′(t) = 0.

Theorem (Exact dimension for {ξ})

The function hξ defined by hξ(2−n) := 2−n ·U (ξ[0..n])=M(ξ[0..n]) is an
exact constructive dimension function for the set {ξ}.



Preliminaries The original approach Exact Constructive Dimension Logarithmic Scale

RYABKO’s result: Large sets contain complex ω-words

Theorem (RYABKO’84, “classical case”)

For α ∈ [0,1] it holds α= dimH{ξ : ξ ∈ {0,1}ω∧κ(ξ)≤α}.

Theorem (St’93, “classical case”)

If F ⊆ {0,1}ω and Lα(F)> 0 then there is a ξ ∈ F such that

liminfn→∞
KS(ξ[0..n])

n ≥a.e. α ·n− (1+ε) logn.

Theorem (Lower KA-bound, Mielke’09)

Let F ⊆ {0,1}ω, h be a gauge function and H h(F)> 0.
Then for every c > 0 with H h(F)> c ·M(e) there is a ξ ∈ F such that

KA(ξ[0..n])≥a.e. − logh(2−n)+c.
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Complexity bounds

Fact {
ξ : ∃c(KA(ξ[0..n])≤i.o. − logh(2−n)+c)

}= ⋃
c′∈(0,∞)

Sc′,h[U ]

Corollary (to Lower KA-bound)

Let h,h′ be gauge functions such that lim
t→0

h′(t)
h(t) = 0. Then

1
{
ξ : ∃c

(
KA(ξ[0..n])≤i.o. − logh(2−n)+c

)}⊆S∞,h′ [U ], and

2 H h′
(
{
ξ : ∃c

(
KA(ξ[0..n])≤i.o. − logh(2−n)+c

)}
)= 0 .
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Exact dimension function: an example

Example

F := {
x1x2 · · ·xi · · · xi ∈ {0,1}∧∀j(x2j = 0)

}
F has classical Hausdorff dimension dimH F = 1 but does not contain
any random sequence.

The exact Hausdorff dimension is
dimH F = [h(t)= t · log 1

t ] .

Observe − logh(2−n)= n− logn.
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Upper bounds: “Classical case” [St’98]

Definition (Σ2-sets)

A subset F ⊆ {0,1}ω is Σ2-definable if there is a computable set
W ⊆N× {0,1}∗ such that

ξ ∈ F ←→∃m∀n
(
(m,ξ[0..n]) ∈W

)
.

Theorem

If F ⊆ {0,1}ω is Σ2-definable and α≥ dimH F is a right computable real
then there is a computable V ⊆ {0,1}∗ such that F ⊆Vδ and∑

v∈V 2−|v | <∞.

Corollary

If Fi ⊆ {0,1}ω , i ∈N, are Σ2-definable then κ(ξ)≤ dim
⋃

i∈NFi for
ξ ∈⋃

i∈NFi .
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Upper bound on prefix complexity KP

Lemma (REIMANN’04)

Let F ⊆ {0,1}ω and h be a gauge function. Then H h(F)= 0 if and only
if there is a V ⊆ {0,1}∗ such that F ⊆Vδ := {ξ : |pref(ξ)∩V | =∞} and∑

v∈V h(2−|v |)<∞.

Theorem

If F ⊆ {0,1}ω is Σ2-definable and h is a right computable gauge function
such that H h(F)= 0 then there are a non-decreasing function
h : {2−i : i ∈N} →Q and a computable V ⊆ {0,1}∗ such that

1 h(2−i)≥ h(2−i) for i ∈N,

2
∑

v∈V h(2−|v |)<∞ and F ⊆Vδ, and

3 KP(ξ[0..n])≤i.o. −logr h(r
−n)+O(1) for all ξ ∈ F.



Preliminaries The original approach Exact Constructive Dimension Logarithmic Scale

Upper bounds: Computable dimension

Theorem (“Classical case”, St’98)

If F ⊆ {0,1}ω is Σ2-definable and α≥ dimH F is a right computable real
then there is a computable martingale V such that F ⊆S∞,α[V ].

Theorem

For every Σ2-definable F ⊆ {0,1}ω and every computable gauge function
h :Q→R such that H h(F)= 0 there is a computable martingale V

such that F ⊆⋃
c>0 Sc,h[V ].
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Dilution functions

Modulus function: g :N→N strictly monotone, that is, g(n+1)> g(n)

Example [Dilution function with |ϕ(w)| = g(|w |)]
ϕ : {0,1}∗ → {0,1}∗

ϕ(e) := 0g(0) and
ϕ(wx) := ϕ(w) ·x ·0g(n+1)−g(n)−1

Definition (Dilution function)

For every v ∈ pref(ϕ({0,1}∗)) there are wv ∈ {0,1}∗ and xv ∈ {0,1} such
that
ϕ(wv)@ v vϕ(wv ·xv) ∧ ∀y

(
y ∈ {0,1}∧y 6= xv → v 6vϕ(wv ·y)

)
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HAUSDORFF measure of diluted sets

Theorem

Let g :N→N be a strictly increasing function, ϕ a corresponding
dilution function and h : (0,∞)→ (0,∞) be a gauge function. Then

1 H h(ϕ({0,1}ω)) ≤ liminf
n→∞

h(2−g(n))

2−n , and

2 if c ·2−n ≤a.e. h(2−g(n)) then c ≤H h(ϕ({0,1}ω)).

Corollary

If c ·2−n ≤a.e. h(2−g(n))≤ c′ ·2−n then c ≤H h(ϕ({0,1}ω))≤ c′.
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Dilution: an existence condition for modulus functions

Lemma (Sufficient condition)

If a gauge function h is upwardly convex (or ∩-convex) on some interval
(0,ε) and limt→0 h(t)= 0 then there is an n0 ∈N such that for all n ≥ n0

there is an m ∈N satisfying

2−n < h(2−m)≤ 2−n+1 .

In particular, there are a modulus function g :N→N and constants
c0,c1such that

0< c0 ≤ liminf
n→∞

h(2−g(n))

2−n ≤ limsup
n→∞

h(2−g(n))

2−n ≤ c1

If, moreover, h :Q→R is a computable gauge function then also
g :N→N can be chosen to be computable.
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Exact complexity bound

Theorem (St ’09)

Let ϕ : {0,1}∗ → {0,1}∗ be a computable dilution function with modulus
function g :N→N. Then∣∣KA

(
ϕ(ξ)[0..g(n)]

)−KA
(
ξ[0..n]

)∣∣≤O(1) for all ξ ∈ {0,1}ω and all n ∈N .

Theorem

Let h :Q→R be a computable gauge function such that for all n ≥ n0

there is an m ∈N with 2−n < h(2−m)≤ 2−n+1. Then

1 H h(
{
ξ : ∃c

(
KA(ξ[0..n])≤a.e. − logh(2−n)+c

)}
)> 0, and

2 h is an exact dimension function for the sets{
ξ : ∃c

(
KA(ξ[0..n])≤i.o. − logh(2−n)+c

)}
and{

ζ : ∃c
(
KA(ζ[0..n])≤a.e. − logh(2−n)+c

)}
.
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Functions of the Logarithmic Scale

Definition (Functions of the logarithmic scale)

h(p0,...,pk )(t)= tp0 ·
k∏

i=1

(
logi 1

t

)−pi

where logi t :=max{1, log2 . . . log2︸ ︷︷ ︸
i times

t} .

Definition (Generalised HAUSDORFF Dimension)

dim(k)
H F := sup<lex

{(p0, . . . ,pk) :H
h(p0 ,...,pk )(F)=∞}

= inf<lex {(p0, . . . ,pk) :H
h(p0 ,...,pk )(F)= 0}
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Upper bound

Let h(p0,...,pk ), k > 0, be a function of the logarithmic scale. We define
βh := logh(p0,...,pk−1). Observe that

βh(2
−n) = p0 ·n−

∑k−1
i=1 pi · logi n and

logh(p0,...,pk )(2
−n) = p0 ·n−

∑k−1
i=1 pi · logi n −pk · logk n

Theorem (MIELKE’10)

Let k ≥ 0, (p0, . . . ,pk) be a (k +1)-tuple and h(p0,...,pk ) be a function of
the logarithmic scale. Then

dim(k)

H

{
ξ : ξ ∈ {0,1}ω∧ liminf

n→∞
KA(ξ[0..n])−βh(2−n)

logk n
< pk

}
≤ (p0, . . . ,pk) .
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Lower bound

Theorem (MIELKE’10,St)

Let k > 0, (p0, . . . ,pk) be a (k +1)-tuple where p0, . . . ,pk−1 are
computable reals. Then

dim(k)

H

{
ξ : ξ ∈ {0,1}ω∧ liminf

n→∞
KA(ξ[0..n])−βh(2−n)

logk n
< pk

}
= (p0, . . . ,pk)

for h = h(p0,...,pk ).
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Why our bounds don’t match

“Inexact” case: approximation of real by computable reals

For every real number α and every ε> 0 there are computable reals
α0,α1 such that |α1 −α0| < ε and α0 ≤α≤α1.

Example: logarithmic scale

If there is a computable function h :Q→R such that

tp0 ≤ h(t)≤ tp0 · log
1

t
for t ∈ (0,1)∩Q

then p0 is computable.
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Counter-example

RYABKO’s theorem is independent of the complexity. That is, we can
replace KA by other complexities, e.g. by plain KOLMOGOROV complexity
KS.
What about our theorem?

Example [Oscillation of the plain complexity KS]

It is known that KS(ξ[0..n])≤i.o. n− logn+O(1). Thus

{
ξ : ξ ∈ {0,1}ω∧ liminf

n→∞
KS(ξ[0..n])−n

logn
< ε−1

}
= {0,1}ω for all ε> 0

but

dim(1)

H

{
ξ : ξ ∈ {0,1}ω∧ liminf

n→∞
KS(ξ[0..n])−n

logn < ε−1
}
= 1>lex (1,ε−1).
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